OFICINA DE UNIDADES DE MEDIDA

Ana Paula Dick - anadick7@gmail.com

Ana Paula Scheeren – apscheere@universo.univates.br

Angélica Schossler - aschossler1@univates.br

Aline Anonelo - aantonelo@univates.br

Márcia Jussara Hepp Rehfeldt - mrehfeld@univates.br

Daiani Clesnei Da Rosa - dcrosa@univates.br

Maria Isabel Lopes - milopes@univates.br

Maria Elisabete Bersch - bete@univates.br

Contextualização

O Centro Universitário UNIVATES dispõe do Laboratório Univates de Aprendizagem - UNIAPREN, o qual objetiva proporcionar recursos de apoio didático pedagógico para professores e alunos da instituição. Um destes recursos voltados para os discentes são as monitorias ofertadas em diferentes áreas, como Matemática, Física, Química, Língua Portuguesa e Programação.

As monitorias buscam auxiliar aos estudantes durante o semestre, por meio de atendimentos individualizados previamente agendados. Durante estes atendimentos são realizados exercícios propostos em aula e/ou organizados pelos monitores e revisados os conteúdos. As dificuldades apresentadas pelos alunos atendidos na monitoria são registradas diariamente em uma planilha, que serve como base para o desenvolvimento de objetos de aprendizagem e oficinas. Assim a equipe do UNIAPREN planeja a confecção dos objetos, bem como as oficinas mencionadas anteriormente.

Uma das oficinas já desenvolvidas e ministradas foi a de Unidades de Medidas e suas Conversões, a qual foi oferecida em momentos diferentes ao longo do ano letivo de 2013 e no período de férias do semestre 2014/A. Desta forma o enfoque desta produção técnica será esta oficina em particular, bem como os resultados observados durante a mesma.

Objetivos

Especificamente a oficina objetiva:

- Retomar conteúdos estudados e revisá-los, buscando esclarecer dúvidas e aplicar os conhecimentos através de exercícios:
 - Argumentar a respeito das grandezas e suas respectivas unidades de medidas;
- Realizar conversões de unidades do Sistema Internacional (SI) para unidades cotidianas observadas e mencionadas;
 - Realizar conversões de unidades cotidianas para unidades do Sistema Internacional (SI).

Detalhamento das atividades

A oficina de Unidades de Medida é composta por uma atividade inicial, que desafia os alunos a estimar valores como o comprimento de um fio, volume de alguns objetos, área de um quadro, temperatura da sala, diâmetro da corda, quantidade de folhas na resma e quantidade de bolitas no recipiente, conforme segue:

Atividade 1: **Estime** as medidas indicadas, não esquecendo da respectiva unidade de medida:

- 1. Quantas folhas há na resma disposta na mesa?
- 2. Qual o comprimento da sala de aula?
- 3. Qual o comprimento do fio?
- 4. Qual a espessura do fio?
- 5. Qual a área do quadro branco?
- 6. Em qual(is) dos recipientes mais da metade da capacidade total está preenchida?
- 7. Qual o volume da sala de aula?
- 8. Quantas bolinhas de gude há no recipiente?
- 9. Quantos cubinhos há no recipiente?
- 10. Qual a espessura da tábua de madeira?
- 11. Que quantidade de água há no recipiente?
- 12. Qual a temperatura ambiente da sala?
- 13. Qual a massa dos três objetos disponíveis?
- 14. Qual o peso destes três objetos?

15. Quantos mL caberiam neste recipiente?

Ao concluir as estimativas, os alunos utilizam os instrumentos de medida para obter os valores exatos. Na sequência, realiza-se a socialização das estratégias utilizadas para estimar e quem obteve os resultados mais aproximados.

Acredita-se que a estimativa contribui para que, ao realizar cálculos, seja possível ter noção se o resultado obtido é aceitável dentro dos valores utilizados, a fim de identificar possíveis erros. De acordo com Quartieri, Giongo e Rehfeldt (2013, p. 3):

Estimar não implica uma resposta única. Por exemplo, ao expressarmos a altura de uma pessoa adulta, o intervalo de referência poderá situar-se entre 1,50m e 2,10m. Aliada a isso, a identificação de intervalos que torna um valor aceitável ou não possibilita aos alunos aprenderem a justificar e comprovar suas opiniões, levando-os a desenvolver suas habilidades em cálculo.

Após a atividade inicial, são estudadas as unidades de medida no Sistema Internacional, bem como seus múltiplos e submúltiplos com atividades envolvendo conversões simples e compostas utilizando o seguinte material:

UNIDADE: É uma quantidade específica de uma determinada grandeza.

GRANDEZA: É tudo que envolve uma medida. As grandezas sempre vêm acompanhadas de uma unidade de medida.

Tabelas de unidades de base fundamentais SI (dimensionalidades independentes):

GRANDEZA	UNIDADE	SÍMBOLO
comprimento	metro	m
massa	quilograma	kg
tempo	segundo	s
corrente elétrica	ampère	А
temperatura termodinâmica	kelvin	К
quantidade de matéria	mol	mol

intensidade luminosa	candela	cd
----------------------	---------	----

Tabela de unidades derivadas SI:

GRANDEZA	UNIDADE	SÍMBOLO	EXPRESSÃO
área	metro quadrado	m²	-
volume	metro cúbico	m³	-
velocidade	metro por segundo	m / s	-
aceleração	metro por segundo ao quadrado	m / s²	-
número de onda	metro recíproco	m ⁻¹	-
densidade	quilograma por metro cúbico	kg / m³	-
volume específico	metro cúbico por quilograma	m³ / kg	-
concentração	mol por metro cúbico	mol / m³	-
frequência	hertz	Hz	s ⁻¹
força	newton	newton	kg m / s²
pressão, tensão	pascal	pascal	N / m²
energia, trabalho	joule	J	N m
potência, fluxo radiante	watt	W	J/s
quantidade de eletricidade	coulomb	С	A.s
potencial elétrico	volt	V	W/A
capacitância elétrica	farad	F	C / V
resistência elétrica	ohm	Ω	V/A
condutância elétrica	siemens	S	A/V
fluxo magnético	weber	Wb	V.s
densidade de fluxo mag.	tesla	Т	Wb/m²
indutância	henry	Н	Wb / A

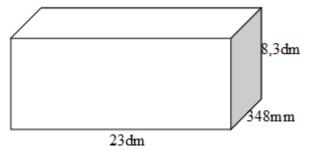
temperatura Celsius	grau Celsius	℃	K
fluxo luminoso	lumen	lm	cd ser
iluminância	lux	lx	lm / m³
atividade (de radionuclídeo)	becquerel	Bq	s ⁻¹
dose absorvida	gray	Gy	J/kg
dose equivalente	sievert	Sw	J/kg

Múltiplos e Submúltiplos decimais das unidades SI

Múltiplos

Fator	Prefixo	Símbolo
10 ²⁴	Yotta	Y
10 ²¹	Zetta	Z
10 ¹⁸	Exa	Е
10 ¹⁵	Penta	P
10 ¹²	Tera	T
109	Giga	G
10 ⁶	Mega	M
10 ³	Quilo	k
10 ²	Hecto	h
10 ¹	Deca	da

Submúltiplos


Fator	Prefixo	Símbolo
10 ⁻¹	deci	d
10-2	centi	С
10 ⁻³	mili	m
10 ⁻⁶	micro	μ
10-9	nano	n
10 ⁻¹²	pico	p
10 ⁻¹⁵	femto	f
10 ⁻¹⁸	atto	a
10 ⁻²¹	zepto	Z
10 ⁻²⁴	yocto	y

Atividades¹:

- **1.** Converta os seguintes comprimentos:
- a) 12 cm para m:
- b) 35 m para km:
- c) 6,7 hm para cm:
- d) 3,7 dm para hm:
- 2. Converta as seguintes áreas:
- a) $25 \text{ m}^2 \text{ para cm}^2 =$
- b) $0.2 \text{ cm}^2 \text{ para mm}^2 =$
- c) $87,75 \text{ km}^2 \text{ para m}^2 =$
- **3.** Converta os seguintes volumes:
- a) $12 \text{ cm}^3 \text{ para m}^3 =$
- b) $529 \text{ dm}^3 \text{ para dam}^3 =$
- c) $800 \text{ km}^3 \text{ para cm}^3 =$
- d) $800 \times 10^{15} \text{ cm}^3 \text{ para km}^3 =$
- **4.** Como converter 15 km³ para L:
- **5.** Uma pessoa utiliza 1h, 20 minutos e 30 segundos para realizar determinada atividade. O tempo total dessa pessoa, em segundos, é?
- **6.** É correto afirmar que 2,52 h, são 2h e 52 minutos? Justifique.
- **7.** Considerando um período de tempo igual a 1,69 anos, reescreva-o indicando quantos anos inteiros, meses inteiros, dias inteiros e assim sucessivamente para horas, minutos e segundos, constituem este valor.

¹ Atividades baseadas no material de aula da disciplina de Fundamentos de Matemática do semestre B/2012, elaborado pelas professoras Marli Teresinha Quartieri e Eliana Fernandes Borragini.

- **8.** Um aquário tem o formato de um paralelepípedo retangular, de largura 50 cm, comprimento 32 cm e altura 25 cm. Para encher ¾ dele com água, quantos litros de água serão usados?
- a) 0,03 L
- b) 0,3 L
- c) 3 L
- d) 30 L
- **9.** A luz move-se no vácuo com velocidade de aproximadamente $3x10^8$ m/s, o que quer dizer que a cada 1 segundo ela anda 300.000.000m. (c=299.792.458m/s).
- a) Que distância a luz percorreria em um ano? Dê sua resposta em m e em km.
- b) O Sol está a 150.000.000km da Terra, aproximadamente. Quanto tempo a luz do sol leva para chegar até a Terra? Dê sua resposta em minutos.
- c) Se tivéssemos um cubo de aresta igual à distância percorrida pela luz em um ano, qual seria o volume deste cubo? Dê sua resposta em m³ e em km³.
- d) Quantos cubos de 200m de aresta caberiam inteiros neste imenso cubo imaginário?
- **10.** Na figura representada abaixo, as medidas não estão em escala. Observe os valores indicados para cada aresta do paralelepípedo e responda as questões a seguir.

- a) Qual o volume deste paralelepípedo, em m³, cm³ e em mm³? Escreva estes valores também na notação científica.
- b) Quantos litros de água caberiam neste objeto?

- c) Supondo que para encher esse tanque seja utilizada uma mangueira que libera apenas 1000ml de água por minuto, quantas horas, minutos e segundos serão necessários para encher esse tanque?
- d) Quantos ml de água seriam necessários para preencher 58% da capacidade total desse paralelepípedo?
- 11. Para saber quantas horas foram trabalhadas na semana, um funcionário realizou um cálculo matemático e obteve o seguinte resultado: 47,86594. Quantas horas, minutos e segundos este funcionário trabalhou?
- **12.** Como converter 1km/h para m/s?
- 13. Como converter 3,7 kg/dm³ em g/cm³?
- **14.** Como converter 0,6kg/ L para g/cm³. E em kg/m³:
- **15.** Pegue uma folha de papel que tenha a espessura de, digamos, 0,1milímetro (mm). Dobre-a ao meio e repita a operação. A folha agora tem uma espessura quatro vezes maior. Supondo que você dispõe de uma folha de mesma espessura que esta, grande o suficiente para um número ilimitado de dobraduras, quantas dobraduras seriam necessárias para que o papel ficasse da altura do Pico da Neblina (3014 metros)?

Resultados parciais

Para que os alunos pudessem avaliar a oficina, aplicou-se um questionário de satisfação. Referente às contribuições para a aprendizagem acadêmica, obteve-se respostas do tipo: "Sim, com estas atividades podemos aprender com métodos diferentes dos ensinados em sala de aula." "Sim, aperfeiçoamento, novas técnicas, modos de resolver os problemas, questões." "Contribuiu para a ampliação do conhecimento e aprimoramento do mesmo." "Sim, entendi várias coisas que

tinha dificuldade.".

Ao longo da oficina percebeu-se o interesse dos alunos quanto ao tema, alguns deles comentaram que a revisão contribuiu para retomar conceitos que são essenciais, servindo como base para as disciplinas de Física e Matemática.

Conclui-se que os alunos, de uma forma geral, apresentam interesse em revisar conteúdos, buscando compreender as atividades propostas, qualificando-se assim para as disciplinas seguintes do seu curso.

Muitos alunos sugeriram outros temas para serem abordados nas oficinas, tais como Leis de Newton, *softwares* específicos, entre outros, o que demonstra que aprovaram a forma como a oficina foi organizada, bem como seu propósito.

Referências

ANDRADE, J. C. De; CUSTODIO, R. **Sistema Internacional de Unidades**, Universidade Estadual de Campinas, Instituto de Química, 2000.

GIONGO, Ieda M.; REHFELDT, Márcia J. H.; QUARTIERI, Marli T. Problematizando o uso da estimativa em aulas de Matemática da Escola Básica. **Anais do XI Encontro Nacional de Educação Matemática Curitiba** – Paraná, 18 a 21 de julho de 2013. Disponível em: http://sbem.bruc.com.br/XIENEM/pdf/1099 200 ID.pdf> Acesso em 28 out. 2013.