ROTEIRO DE USO DO SIMULADOR COMPUTACIONAL PhET: UMA PROPOSTA MEDIADORA NOS PROCESSOS DE ENSINO E APRENDIZAGEM DA FÍSICA

Leandro Neutzling Barbosa¹, Eniz Conceição Oliveira², José Claudio Del Pino²

¹Instituto Federal de Educação, Ciência e Tecnologia – Sul-rio-grandense – Câmpus Camaquã Rua Ana Gonçalves da Silva, 901 · Bairro Olaria · Camaquã/RS

> ²Centro Universitário UNIVATES Rua Avelino Tallini, 171 – Lajeado/RS

Contextualização

Este trabalho foi desenvolvido no Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense (IFsul)/Câmpus Camaquã. O Câmpus Camaquã está situado na Rua Ana Gonçalves da Silva, 901, Bairro Olaria, na cidade de Camaquã, no Rio Grande do Sul/ BRASIL. A atividade foi realizada com a turma de alunos do 2º ano do Curso Técnico em Automação Industrial - Forma Integrada na disciplina de Física II, composta por 15 alunos, sendo 11 meninos e quatro meninas, distribuídos na faixa etária entre 15 e 19 anos de idade.

Tal estudo buscou desenvolver um roteiro de atividades para a utilização do *software* simulador computacional *Physics Education Technology* (PhET) da *University of Colorado Boulder*. Para tanto, a simulação "Efeito Estufa", está disponível para *download* no endereço eletrônico http://phet.colorado.edu/pt_BR/simulation/greenhouse.

Vale ressaltar que este roteiro faz parte da dissertação de mestrado do Programa de Pós-Graduação em Ensino de Ciências Exatas (PPGECE) do Centro Universitário UNIVATES.

Objetivo

Construir um roteiro de atividades para utilizar o simulador PhET visando auxiliar na compreensão do Efeito Estufa na educação básica.

Detalhamento

Roteiro de atividade

A proposta elaborada é um roteiro de uso do simulador PhET, dirigida para estudantes e professores do ensino médio, com o intuito de introduzir o tema do Efeito Estufa numa perspectiva transversal. Assim, ao desenvolver o conteúdo sobre Terminologia, previsto no Plano de Ensino da referida turma, abordou-se o tema em questão. Tal abordagem se mostrou pertinente, pois a Termologia é a parte da Física que estuda o calor, as mudanças de estado físico da matéria, os processos de transferência de calor, as transformações termodinâmicas, dentre outros.

Para tanto, utilizou-se o laboratório de informática, sendo que tal atividade foi realizada individualmente pelos alunos. Dessa maneira, seguiu-se o roteiro impresso previamente elaborado. Este roteiro possui 12 demonstrações de uso do simulador. Os estudantes foram orientados a acessar o ícone da simulação "Efeito Estufa", disponível para *download* no endereço eletrônico:

http://phet.colorado.edu/pt_BR/simulation/greenhouse, devendo, neste caso, escolher a versão em Português no final da página e clicar na opção "use já".

1ª Demonstração de utilização do software:

Selecione a aba Efeito Estufa, após selecione atmosfera Hoje e utilize a escala Celsius conforme Figura 1.

Figura 1. Atmosfera Hoje

Observe e descreva o que ocorre

.....

2ª Demonstração de utilização do software:

Selecione a aba Efeito Estufa, em seguida, selecione atmosfera 1750 e utilize a escala Celsius conforme Figura 2.

Figura 2. Atmosfera em 1750

PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE CIÊNCIAS EXATAS – UNIVATES Rua Avelino Tallini, 171, Universitário – 95900-000 Lajeado, RS Brasil – Fone/Fax: 51. 3714-7000 e-mail: <u>ppgece@univates.br</u> home-page: <u>www.univates.br/ppgece</u>

PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE CIÊNCIAS EXATAS -MESTRADO

Observe e descreva o que ocorre.

.....

3ª Demonstração de utilização do software:

Selecione a aba Efeito Estufa, após selecione atmosfera Era do Gelo e utilize a escala Celsius conforme Figura 3.

Figura 3. Atmosfera Era do Gelo

Observe e descreva o que ocorre.

4ª Demonstração de utilização do software:

Selecione a aba Efeito Estufa, selecione atmosfera Hoje, selecione 3 no número de nuvens e utilize a escala Celsius conforme Figura 4.

PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE CIÊNCIAS EXATAS -MESTRADO

Figura 4. Atmosfera Com Nuvens

Observe e descreva o que ocorre.

.....

5ª Demonstração de utilização do software:

Selecione a aba Efeito Estufa, selecione atmosfera Concentração Ajustável e utilizea escala Celsius conforme Figura 5.

Figura 5. Atmosfera Com Concentração Ajustável

PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE CIÊNCIAS EXATAS – UNIVATES Rua Avelino Tallini, 171, Universitário – 95900-000 Lajeado, RS Brasil – Fone/Fax: 51. 3714-7000 e-mail: <u>ppgece@univates.br</u> home-page: <u>www.univates.br/ppgece</u>

PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE CIÊNCIAS EXATAS -MESTRADO

Deslize o controle Concentração de Gás do Efeito Estufa entre Nenhum e Muitos.

Observe e descreva o que ocorre.

.....

Pós-teste: questões de número um, dois e três.

Questão 1: A partir das observações realizadas, você considera os Gases do Efeito Estufa maléficos ou benéficos? Explique.

Questão 2: As nuvens interferem no efeito estufa? Explique. Questão 3: Depois de aquecida, qual tipo de radiação a terra emite para o espaço?

6ª Demonstração de utilização do software:

Selecione a aba Camada de Vidro e selecione na sequência 1, 2 e 3 no Número de Placas de Vidro conforme Figura 6.

Figura 6. Atmosfera Com Camada de Vidro

O Efeito Estufa (3.04)	•)				
Arquivo Ajuda					
Efeito Estufa	Camadas de Vidro	Absorção de Fóton			- 日料副店
			•		Fóton solar
		•			Opções 1 ⊕ Número de Placas de Vidro ⊘ Termômetro ○ Vertodos os fótons
		•	•	•	Reiniciar tudo?
260K -13°C	•	÷.,	· · ·		
		lento	rápido		

Observe e descreva o que ocorre.

Pós-teste: Questão de número quatro.

Questão 4: Qual a relação entre o efeito apresentado na simulação com camadas de vidro e o interior de um automóvel?

.....

7ª Demonstração de utilização do software:

Selecione a aba Absorção de Fóton, selecione Fóton Infravermelho e em *Atmospheric Gases* marque CH₄ conforme Figura 7.

PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE CIÊNCIAS EXATAS -MESTRADO

Figura 7. Absorção de fóton Infravermelho por CH4

Varie a intensidade de fótons emitidos pela fonte, através do botão deslizante da fonte.

Observe e descreva o que ocorre.

Repita a 7ª demonstração utilizando Fóton de Luz. Observe e descreva o que ocorre.

8ª Demonstração de utilização do software:

Marque a aba Absorção de Fóton, selecione Fóton de Infravermelho e em *Atmospheric Gases* marque CO₂ conforme Figura 8.

PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE CIÊNCIAS EXATAS -MESTRADO

💩 O Efeito Estufa (3.04)			
Arquivo Ajuda			
Efeito Estufa Camadas de Vidro Absorção de Fóte	on		
			Atmospheric Gases ^
			⊙ CH ₄
			● CO ₂
			_ н_о
			° 2
			○ N ₂ 💽
			ം 🍋
			° 2
			O Atmosphere
		-	 Autosphere
			CH ₄ 0 Molecules
			F
			0 Molecules
Fóton			· •
* Infravermelho 🤒			H O Alalamian
Fóton			1.20 Molecules
Visível			
			No. 0 Molecules
			O ₂ 0 Molecules
	00		2
	U		

Figura 8. Absorção de fóton Infravermelho por CO2.

Varie a intensidade de fótons emitidos pela fonte, através do botão deslizante.

Observe e descreva o que ocorre.

Repita a 8ª demonstração utilizando Fóton de Luz. Observe e descreva o que ocorre.

9ª Demonstração de utilização do software:

Marque a aba Absorção de Fóton, selecione Fóton Infravermelho e em *Atmospheric Gases* marque H₂O.

🔬 O Efeito Estufa (3 - 🖓 - 🗙 vo Ajuda Absorção de Fóton PhET Atmospheric Ga CH, Ж co, 3.3 H₂O N₂ 02 ٨ Atmos Infravermelho Fóton Visíve ا ا

Figura 9. Absorção de fóton Infravermelho por H₂O.

Varie a intensidade de fótons emitidos pela fonte, através do botão deslizante.

Observe e descreva o que ocorre.

Repita a 9ª demonstração utilizando Fóton de Luz Observe e descreva o que ocorre.

10ª Demonstração de utilização do software:

Marque a aba Absorção de Fóton, selecione Fóton Infravermelho e em *Atmospheric Gases* marque N₂.

🔬 O Efeito Estufa (3 - - - Xvo Ajuda Absorção de Fóton PhET Atmospheric Ga CH4 Ж co, 3.3 H₂O N₂ 02 ٨ Atmos Infravermelho Fóton Visíve ا ا

Figura 10. Absorção de fóton Infravermelho por N2.

Varie a intensidade de fótons emitidos pela fonte, através do botão deslizante.

Observe e descreva o que ocorre.

Repita a 10^ª demonstração utilizando Fóton de Luz Observe e descreva o que ocorre.

11ª Demonstração de utilização do software:

Marque a aba Absorção de Fóton, selecione Fóton Infravermelho e em *Atmospheric Gases* marque O₂ conforme Figura 11.

🔬 O Efeito Estufa (3.04)	
Efeito Estufa Camadas de Vidro Absorção de Fóton	Phele
	Aumospheric Gases
	⊙ CH ₄
	o co, 🔒 🐴
	⊖ <u>2</u>
	○ ¹ 2 ¹
	Puild
	Atmosphere
· · · · · · · · · · · · · · · · · · ·	CH ₄ 0 Molecules
	CO2 0 Molecules
Eóton	I
Infravermelho	H ₂ O 0 Molecules
Fóton	I
Visivel	N2 0 Molecules
	Ū
	O2 0 Molecules
	I
	Reiniciar tudo?

Figura 11. Absorção de fóton Infravermelho por O2.

Varie a intensidade de fótons emitidos pela fonte, através do botão deslizante.

Observe e descreva o que ocorre.

Repita a 11ª demonstração utilizando Fóton de Luz Observe e descreva o que ocorre.

12ª Demonstração de utilização do software:

Marque a aba Absorção de Fóton, selecione Fóton Infravermelho e em *Atmospheric Gases* selecione *Build Atmosphere* (construção de atmosfera) conforme Figura 12. Clique no botão iniciar.

Figura 12. Build Atmosphere

Varie a intensidade de fótons emitidos pela fonte, através do botão deslizante.

Selecione 15 moléculas de O_2 , observe, selecione mais 15 moléculas de N_2 , observe, selecione mais 15 moléculas de H_2O , observe, selecione mais 15 moléculas de CO_2 e selecione mais 15 moléculas de CH_4 .

Descreva o que ocorre.

.....

.....

Repita a 12ª demonstração utilizando Fóton de Luz.

Descreva o que ocorre.

.....

Pós-teste: questões de número cinco e seis

Questão 5: Quais os gases atmosféricos contribuem para o efeito estufa? Explique.

.....

PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE CIÊNCIAS EXATAS – UNIVATES Rua Avelino Tallini, 171, Universitário – 95900-000 Lajeado, RS Brasil – Fone/Fax: 51. 3714-7000 e-mail: <u>ppgece@univates.br</u> home-page: <u>www.univates.br/ppgece</u>

Questão 6: Dos gases que contribuem para o Efeito Estufa, o CO_2 é o que tem o menor potencial para aquecer a atmosfera. Então porque esse gás é o que representa maior risco para o aquecimento global? Justifique.

.....

Resultados obtidos

Percebeu-se durante a interação dos estudantes com o simulador que os mesmos não apresentaram dificuldades na compreensão do roteiro, realizando as atividades propostas.

A partir da interação com o simulador PhET, observou-se que os estudantes modificaram e ampliaram conceitos sobre o Efeito Estufa. Notou-se, principalmente, que a simulação auxiliou na compreensão de que o Efeito Estufa é um fenômeno natural e que as ações antrópicas podem potencializá-lo.

Outra evidência que merece destaque refere-se à percepção por parte dos estudantes sobre os gases que contribuem para o Efeito Estufa. Pode-se dizer que a principal a alteração se deu sobre a participação do vapor d'água e do nitrogênio. Pois, antes da interação com o simulador, o vapor d'água não foi considerado pela maioria dos estudantes como um gás de Efeito Estufa, porém, após esta interação, a maioria dos estudantes considerou este como sendo um gás de Efeito Estufa. Com relação ao nitrogênio, antes da interação com o simulador, este foi considerado pela maioria dos estudantes da interação com o simulador, este foi considerado pela maioria dos estudantes considerou este como sendo um gás de Efeito Estufa. Com relação ao nitrogênio, antes da interação com o simulador, este foi considerado pela maioria dos estudantes como um gás de Efeito Estufa. Porém, após a interação, tal gás não foi considerado um gás de Efeito Estufa.

Ainda, salienta-se que a atividade desenvolvida sobre o tema Efeito Estufa, suscitou um momento favorável para a abordagem de temas relacionados à Termologia, à Óptica e à Ondulatória etc., constituindo-se como tema transversal no ensino da física.

Finalizando, enfatiza-se que o simulador PhET, no que se refere a simulação "Efeito Estufa", mostrou-se como uma ferramenta capaz de potencializar os processos de ensino e aprendizagem.

Referências

PHET. University of Colorado Boulder .**Interactive Simulations**. Disponível em: http://phet.colorado.edu/pt_BR/simulation/greenhouse>. Acesso em: 10 abr. 2014.