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ABSTRACT 

 
Artificial Intelligence has become part of our everyday for quite some time now: movies have 

portrayed it in its histories, news have reported of its advancements and we have seen its 

results in our electronics and machinery. In the latest years a new term started to gain traction, 

Machine Learning, with many articles, companies and media covering it, opening possibilities 

of what could be achieved with the ability to train computers using all the data generated 

nowadays. This work gives an overview of a few current Machine Learning techniques, 

aiming in the application of automated video game playing. In particular, it uses the Starcraft 

II Reinforcement Environment as a testbed for evaluating the selected automated learning 

strategies. 

 

Keywords: Artificial Intelligence, Machine Learning, neural networks, Reinforcement 

Learning, Starcraft II. 
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RESUMO 

 
 
A Inteligência Artificial já faz parte do nosso cotidiano há tempos: os filmes a retrataram em 

suas histórias, as notícias relataram seus avanços e vemos seus resultados em nossos 

equipamentos eletrônicos. Nos últimos anos, um novo termo começou a ganhar força, 

Aprendizado de Máquina, com muitos artigos, empresas e mídia o cobrindo, abrindo 

possibilidades sobre o que poderia ser alcançado com a capacidade de treinar computadores 

usando os dados gerados hoje em dia. Este trabalho dá uma visão geral sobre várias das atuais 

técnicas de Aprendizado de Máquina, visando sua aplicação no jogo automático de jogos 

eletrônicos. Em particular, utiliza-se o Ambiente de Reforço Starcraft II como ambiente de 

testes para a avaliação das estratégias de aprendizagem automatizadas selecionadas. 

 

Palavras-chave: Inteligência Artificial, Aprendizado de Máquina, redes neurais, 

Aprendizagem por Reforço, Starcraft II. 



7 
 

 

 

 

 

 

 

 

SUMMARY 

1 INTRODUCTION ............................................................................................................. 12 

1.1 Motivation ................................................................................................................... 12 

1.2 Objectives .................................................................................................................... 13 

1.3 Methodology ................................................................................................................ 14 

1.4 Text Overview ............................................................................................................. 14 

2 LITERATURE REVIEW ................................................................................................. 16 

2.1 Beginnings of Artificial Intelligence .......................................................................... 16 

2.2 Evolution of AI ............................................................................................................ 17 

2.3 Recent AI ..................................................................................................................... 18 

2.3.1 Machine Learning ............................................................................................... 22 

2.3.2 Vision .................................................................................................................... 22 

2.3.3 Robotics ................................................................................................................ 25 

2.3.4 Speech Recognition .............................................................................................. 26 

2.3.5 Expert Systems ..................................................................................................... 27 

2.3.6 Natural Language Processing ............................................................................. 27 

2.3.7 Neural Networks ...................................................................................................... 28 

2.4 Machine Learning groups of study ....................................................................... 29 

2.5 Reinforcement Learning ........................................................................................ 30 

3 DEVELOPMENT .............................................................................................................. 36 

3.1 Implementation tools .................................................................................................. 36 

3.1.1 Starcraft II ........................................................................................................... 36 

3.1.2 SC2LE ................................................................................................................... 38 

3.1.3 Agents ................................................................................................................... 46 

3.1.4 Mini-games ........................................................................................................... 46 

3.1.5 TensorFlow ........................................................................................................... 51 

3.2 OpenAI Baselines ........................................................................................................ 51 

3.2.1 Advantage Actor Critic – A2C ........................................................................... 52 

3.2.2 Deep Queue Learning – DQN ............................................................................. 53 

3.3 Communication ........................................................................................................... 54 

4 RESULTS ........................................................................................................................... 56 

4.1 Methodology ................................................................................................................ 56 

4.2 Agent Setup ............................................................................................................. 56 

4.3 Results ...................................................................................................................... 57 

4.3.1 Collect Mineral results ............................................................................................ 57 

4.3.2 Defeat Zerglings results .......................................................................................... 59 

4.4 Summary ................................................................................................................. 62 

5 CONCLUSION .................................................................................................................. 64 

5.1 Future Work ........................................................................................................... 64 

REFERENCES ..................................................................................................................... 65 



8 
 

 

 

 

 

 
LIST OF IMAGES 

 

 
Figure 1: Heatmap used by Uber AI to calculate costs, availability and time .................. 20 

Figure 2: Breakdown of the AI field and its sub areas ........................................................ 21 

Figure 3: Example of image breakdown for analysis .......................................................... 25 

Figure 4: Example of neural network model ....................................................................... 28 

Figure 5: Representation of agent behavior ......................................................................... 31 

Figure 6: Agent evolution graph ........................................................................................... 32 

Figure 7: Depiction of old societies playing games .............................................................. 33 

Figure 8: Global market for games ....................................................................................... 34 

Figure 9: Starcraft II Gameplay ........................................................................................... 37 

Figure 10: Representation of SC2LE flow ........................................................................... 44 

Figure 11: Depiction of the different information layers .................................................... 45 

Figure 12: Comparison between the player and the agent of the inputs ........................... 46 

Figure 13: Starting state of the mini-game ........................................................................... 47 

Figure 14: Mini-game being played ...................................................................................... 48 

Figure 15: Scores by episode.................................................................................................. 48 

Figure 16: Mini-game being played ...................................................................................... 49 

Figure 17: Mini-game being played ...................................................................................... 50 

Figure 18: Mini-game being played ...................................................................................... 50 

Figure 19: Tensorflow neural network example .................................................................. 51 

Figure 20: Actor – Critic Model ............................................................................................ 53 

Figure 21: Deep Queue Network Model ............................................................................... 54 

Figure 22: A2C With Default Parameters Results For Collect Minerals .......................... 57 

Figure 23: DQN With Default Parameters Results For Collect Minerals ......................... 58 

Figure 24: A2C With Custom Parameters Results For Collect Minerals ......................... 58 

Figure 25: DQN With Custom Parameters Results For Collect Minerals ........................ 59 

Figure 26: A2C Results For Defeat Zerglings ...................................................................... 60 

Figure 27: DQN Results For Defeat Zerglings ..................................................................... 60 

Figure 28: A2C With Custom Parameters Results For Defeat Zerglings ......................... 61 

Figure 29: DQN With Custom Parameters Results For Defeat Zerglings ........................ 61 



9 
 

 

 

 

 

 

 

 

LIST OF TABLES 

Table 1: Machine Learning groups information ................................................................. 30 

Table 2: Agent Parameters Setup Table .............................................................................. 57 

Table 3: Collect Mineral Shards Results Table ................................................................... 59 

Table 4: Defeat Zerglings Results Table .............................................................................. 61 



10 
 

 

 

 

 

 
LIST OF ABBREVIATIONS 

 
 

AI Artificial Intelligence 

API Application Programming Interface 

ML Machine Learning 

RL Reinforcement Learning 

SC2 Starcraft II 

SC2LE Starcraft II Learning Environment 



11 
 

 

1 INTRODUCTION 

 

 

Artificial intelligence (AI) has become part of our life, being a common term in any 

conversation that bring up computers or software being used in the process of automate 

decision making areas that were previously done by humans. 

After AI achieved such notoriety and its improvements were accepted as invaluable in 

many areas, researchers started to focus on how to construct better AIs. It became clear that 

many avenues could be pursued and many techniques developed decades ago by groups of 

study of Machine Learning could now be revisited using modern computers and programming 

techniques. 

 

1.1 Motivation 

 

 
Games are as old as humankind and have evolved hand in hand with us, with the 

advent of computers they became complex pieces of software, allowing for a multitude of 

genres to be developed, such as role playing, soccer, shooters and strategy. 

Computer games offer an incredible new environment for AI, with a variety of 

challenges that need to be understood and overcome in order to achieve victory. This test 

chambers can help us to overcome challenges that would otherwise be too complex or 

expensive to be solvable directly in a real-world environment. 

Currently, even if we were to limit our scope to the data being generated in the world, 

to the ones generated by the human interaction with electronics of all kinds, we would have 

amounts of data far beyond the processing power of any conventional data analysis software, 

even if used in conjunction with super computers. 

Adding to that equation, data generated by humans through the use of applications like 

Whatsapp, Facebook and Instagram would turn the task of analyze such amount of data 

impossible with the hardware available today or for many decades to come (even without 

considering the fact that the amount of data generated tends to increase as we adopt more 

technology in our lives). 

Taking into account the amount of data available and the test chamber that games 

offer, a new environment was created to help close the gap between games and research: 
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SC2LE (Starcraft II Learning Environment), created in partnership by DeepMind and 

Blizzard Entertainment. 

An AI agent playing Starcraft II through SC2LE have to: 

 
 

• Control hundreds of units in cohesion, using strategy to exert influence and secure 

areas on the map; 

• Manage resources required to construct a base and build units; 

• Make decisions based on imprecise information offered by the game screen and mini- 

map, both which have a “fog-of-war” effect that prevents vision if no friendly unit is 

nearby an area; 

• Maps are big and diverse, offering many obstructions and the concept of land and air 

units; and 

• Games may last for many minutes and decisions may not show results or 

consequences until later on. 

 
All points considered, SC2 games are a difficult challenge towards building better AI 

tools and techniques that can be later applied to many areas, raising the simulation aspect of 

games to a new standard and importance. 

The befits that can be achieved by merging the amount of data available with new 

discoveries in Reinforcement Learning (RL) are vast, most areas can benefit if some manner 

by either have tasks being automated or simply by making better decisions through their 

processes. One example is in the medical area, where images, laboratory results and 

symptoms can go through AI systems that have been trained with millions of cases and will 

help doctors make decisions or maybe a simpler case where trained AI systems can help 

companies run in a more efficient way, lowering costs and improving results. 

 

1.2 Objectives 

 

 
The main objective of this work is to analyze a few Reinforcement Learning 

algorithms and techniques, by creating agents that play the two Starcraft II mini-games. Data 

from running two learning algorithms in different configurations is analyzed, giving basis this 

work results and conclusions. 
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Secondary objectives, of this work are: 

 
 

• Analyze the current state-of-art of Reinforcement Learning; 

• Briefly analyze different Reinforcement Learning algorithms and strategies current; 

being used by the academy and industry; 

• Analyze SC2LE and evaluate the tools presented by the library; 

• Successfully Run Starcraft II agents using the selected algorithms; 

• Evaluate the obtained results. 

 

 

 
1.3 Methodology 

 

 
The research methodology began with a bibliographic revision that was used as the 

foundation to the work, followed by data related to Reinforcement Leaning (RL) algorithms, 

libraries and frameworks commonly used in researches related to the subject. 

With a strong base of knowledge at hand, tests were conducted using the SC2LE, 

where the agents were trained using the selected RL algorithms. The agents played the 

selected mini-games available within the tool and all data created was collected and used to 

help with final conclusions. 

 

1.4 Text Overview 

 

 
For best comprehension, this work is divided in chapters with the following order of 

presentation: 

Chapter 2 presents the bibliographic revision from published material, encompassing 

the beginning of Artificial Intelligence and its evolution, modern-day advancements provided 

by AI in many fields, Machine Learning, its groups of study and algorithmic differences. 

Moreover, we also address Reinforcement Learning and its need for data, games, its 

electronic segment and how AI affects it. The Chapter 3 presents all the technical steps 

involved with the setup of the game and mini-games inside SC2LE, details about the 

communication interface between game and library, agents and the RL algorithms and 

software libraries used. In Chapter 4 the experiments conducted are described, followed by 



14 
 

 

the presentation of the data collected during the tests. The results obtained are then analyzed. 

Chapter 5 concludes with some final remarks and possibilities for future work. 
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2 LITERATURE REVIEW 

 

 

This section presents and analyzes the theoretical references used during the 

development of this work. Each section will address a specific aspect or subject important to 

the whole process, being discoveries that led to the current state of the knowledge and 

technology or specific aspects that will be used and need to be well understood in order for 

them to be well handled. 

 

2.1 Beginnings of Artificial Intelligence 

 

 
Computing History is marked with Alan Turing’s conception of the “Turing 

machines” and the release of his paper “Theory of Computation”, which is the cornerstone to 

the computer revolution that followed since then. 

As presented by (RUSSEL et al, 1995), the first work that is now generally recognized 

as AI was done by Warren McCulloch and Walter Pitts, in 1943, when they created a model 

of artificial neurons that were based on three concepts. The first was the physiology and 

function of neurons, the second was propositional logic and the third was the Turing’s theory 

of computation. 

With that concept in hand, they went ahead to show that any computable function 

could be computed by a network of said neurons. Soon after Donal Heeb (1949) gave his 

contribution by demonstrating an updating rule that would allow the neurons to learn, by 

allowing the strength of connections to be modified. 

In 1951 the first neural network computer called SNARC was built by Marvin Minsky 

and Dean Edmonds in the Princeton mathematics department, all the while the first chess 

playing programs were already being written by Claude Shannon (1950) and Alan Turing 

(1953). 

As the result of those first steps, Dartmouth College hosted a two month workshop 

during the summer of 1956, where some programs were presented, including a reasoning 

program called the Logic Theorist from Alien Newell and Herbert Simon. Even tough the 

workshop did not result in any major advancement, it was there that the term Artificial 

Intelligence (AI) was agreed to be adopted as the field name. 
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2.2 Evolution of AI 

 

 
In the first decade of the advent of AI, a lot of expectation was created and much 

enthusiasm could be seen around the subject as pointed out by (RUSSEL et al, 1995): “Given 

the primitive computers and programming tools of the time, and the fact that only a few years 

earlier computers were seen as things that could do arithmetic and no more, it was astonishing 

whenever a computer did anything remotely clever.” 

During this period, the first program to implement a human like approach to solving 

puzzles was created by Newell and Simon, it is considered the first one to embody the 

thinking humanly approach by mimicking the way we consider subgoals and possible actions 

that could be taking. 

During this decade, the LISP high level language was created by John McCarthy, 

witch came to be the dominant AI programming language and is still in use nowadays. 

McCarthy also helped to develop time-sharing minicomputers and published a paper in which 

he describes the first complete AI system to utilize general knowledge of the world to offer 

solutions. 

During 1970, AI started to encountered its first real issues, as the predictions of 

coming successes came to fail. Problems such as the lack of knowledge by the programs 

about the problem being solved were noticeable, such as a translation problem presented by 

(RUSSEL et al, 1995) “The famous retranslation of ‘the spirit is willing but the flesh is weak’ 

as ‘the vodka is good but the meat is rotten’ illustrates the difficulties encountered.” 

Another issue encountered was the fact that many problems being tackled by AI were 

hard to present in a manageable way in order to be solved. Before the NP-completeness 

theory, it was thought that with enough processing power and memory, any problem could be 

solved, which proved false when theorems with more than a dozen facts could not be solved. 

A third problem was presented as the fact that the basic structures that were considered 

the base for the construction of intelligent behavior, could in fact learn anything that they 

could represent, but managed to represent very little. This lead to an almost full stop in the 

research of multilayer networks, beginning only to recover in the 80's. 
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This lead to the concept of knowledge-based systems, while the initial AI research 

focused on solving general problems putting together elementary reasoning steps to arrive at 

the desired solution, it proved to offer less then desirable results for more complex problems. 

Later on, research went to the use of more complex reasoning steps and more suited 

knowledge bases, which offered better results but were too specific, as told by (RUSSEL et al, 

1995): “One might say that to solve a hard problem, you almost have to know the answer 

already.” 

As mentioned before, the 80's presented a real comeback to the AI research and the 

rise of the first AI based industries, rising to notoriety offering the world the first successful 

commercial expert system, R1. On par with that, the Japanese presented a ten year plan to 

build intelligent computers, which led the United States and Britain to do the same in fear of 

the Japanese dominion. 

 

2.3 Recent AI 

 

 
In the last two decades AI has evolved a tremendous amount, stopping from being 

something that would be seen of specific circles of talk or science fiction movies, to becoming 

part our our daily routine. Things such as personal voice assistants, self-driving vehicles or 

even behavioral suggestive algorithms started to permeate all aspects of our life, as pointed 

out by (ADAMS, 2017): “The machines haven't taken over. Not yet at least. However, they 

are seeping their way into our lives, affecting how we live, work and entertain ourselves.” 

Some interesting advancements can be pointed out, such as the one that resulted in the 

creation of new business model that competes with the traditional taxi companies. The Uber 

company offers their clients the ability to ask for a ride knowing exactly how much they will 

have to pay, and how long will take for the car to arrive and for the trip to be complete. This is 

done with the use of a AI system that incorporate specific behaviors that calculates distances, 

car availability, traffic and demand during specific times of the day. 

A representation of a heat map (TECHEMERGENCE, 2017) used as input by the 

Uber system to help calculate tariffs can be seen in Figure 1. 
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Figure 1: Heatmap used by Uber AI to calculate costs, availability and time. 

 

 

Source: (TECHEMERGENCE, 2017) 

 

 

Another example of the regular use of AI in our routines be can be seen in the airline 

companies, which uses AI autopilots as a common tool and as much as possible, to many 

passengers surprise as noted by (NARULA, G. 2017): “The New York Times reports that the 

average flight of a Boeing plane involves only seven minutes of human-steered flight, which 

is typically reserved only for takeoff and landing.” 

Following the airline examples, another venue has received a lot of attention, the self- 

driving cars one, with large companies behind it, such as Google and Tesla. Tesla approached 

the problem with his AI using the cars sensors to make decisions based on whats was pre 

determined by the company, while Google went a bit farther, leaving its AI to learn on its own 

in hopes that it will learn how to drive as we do, trough experience (TECHEMERGENCE, 

2017). 

The list of examples is vast and exist on most fields, digital media for example, show 

the use of AI on video games by making better adversaries and challenges, purchase 
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prediction, helping clients to “find” what they might want and fraud detection helping e- 

commerce owners and banks (TECHEMERGENCE, 2017). 

Security surveillance in addition to cameras and monitor, now offer monitoring 

systems that analyze the video feeds and using trained security algorithms can determine if 

the movement detected is a threat and warn a human responsible. Similar technologies are 

implemented within “smart homes”, which have many interconnected technologies that work 

in cohesion to offer the owner an experience tailored for him (TECHEMERGENCE, 2017). 

Areas improved by AI are many, researches are on full speed and opportunities are 

vast, future predictions only seem to increase the expectations and as pointed out by 

(ALBRIGHT, D. 2017): “… sometimes it’s obvious what its’ doing, like when you ask Siri  

to get you directions to the nearest gas station. Sometimes it’s less obvious, like when you 

make an abnormal purchase on your credit card and don’t get a fraud alert from your bank. AI 

is everywhere, and it’s making a huge difference in our lives every day.” 

Despite the numerous advancements and researches released making huge headlines 

on news around the Internet, most of the time they are referred as AI for the sake of simplicity 

and to help readers associate the information with the overall area of expertise. In fact AI is a 

huge area of study which encompass many sub-fields, each with its sub fields, many being 

responsible for leading the way to many discoveries in the AI field. 

A representation of AI and its sub-fields can be seen in Figure 2. 

 
 

Figure 2: Breakdown of the AI field and its sub areas. 
 

 
 

Source: (LINKEDIN AI BLOG POST, 2017) 
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With the amount of AI sub-fields making discoveries that draw attention, a lot of 

investment is being made towards more research, which tend to result in an even bigger 

permeation of AI in our lives, as pointed out by (ATTICK, R 2016): “The proliferation 

intelligent technology is resulting in advanced machines and systems which are capable of 

sensing, thinking, reasoning, finding patterns, predicting, communicating and acting faster 

than humans ever dreamed possible.” 

 
2.3.1 Machine Learning 

 
 

Machine Learning is a field that is attracting a lot of currently, being responsible for 

many new advancements, the term was coined by Arthur Samuel in 1959 to whom was 

attributed the creation of the world first self-learning program. The program he developed 

played checkers and used a search tree of the board to determine the possible moves based on 

the state of the board (RUSSEL, 1995). 

The idea behind ML is to have the program teach itself by iterating its logic using all 

the data available t him as input, each iteration results and some knowledge that will help it 

build its neural network. This process was described by (SAMUEL, 1959): “Machine learning 

is the sub-field of computer science that ‘gives computers the ability to learn without being 

explicitly programmed’.” 

Modern society produces an incredible amount of data each day, being it originated 

from smartphones and computers, applications and social media or even antennas and 

satellites. With an unending stream of data to be feed, ML systems are discovering new ways 

of sell and advertise products, helping business owners to target audiences, helping doctors 

making decisions and even helping with the test of new medicines (DOMINGOS, 2015). 

A recent example of ML being used to help solve problems was presented in an article 

by (KUBAT et al, 1995): “In this paper we describe an application of machine learning to an 

important environmental problem: detection of oil spills from radar images of the sea 

surface”, which resulted in the conduction of field tests using the information learned by the 

ML system as guide. 

 
2.3.2 Vision 
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Object recognition or Computer Vision is another field under the AI category which 

involves the process of taking a picture, movie or stream and interpreting it so computers can 

understand whats been seen and use that information as accordingly. 

A task that is natural to humans, looks so simple and is done almost instantaneous, 

actually is a real complex system as described by (SONKA, 2014): “When a human tries to 

understand an image then previous knowledge and experience is brought to the current 

observation. Human ability to reason allows representation of long-gathered knowledge, and 

its use to solve new problems.” 

For machines the same task is way more difficult and involves complex steps and 

integration of systems in order to translate what is being seen to a computational model. 

These steps are normally broken out as the follow: 

 
• Image Acquisition: is the process of producing the images itself, using a camera to 

creating the image data in pixels that is read by computers. 

• Preprocessing: before the image can be used by the computer it must first be processed 

to ensure the image will satisfy certain requirements, some of those process are re- 

sampling, noise reduction and contrast enhancement. 

• Feature extraction: in this step various aspects of the image are analyzed and taken in 

consideration, such as lines, edges and points of interest. 

• Detection/segmentation: at this point the image is broken down and the parts 

considered most relevant will be taken to the next stages, chosen parts normally 

contain a specific interest point or many grouped interest points. 

• High-level processing: at this step, the chosen part from segmentation are analyzed 

and go trough some processes such as image recognition, image registration, 

estimation of specific parameters and data assumptions. 

• Decision making: lastly is the step deciding if the if the image accepted by the 

application, using tests as automatic inspections, recognition matches and flags for 

human reviews. 

 
A depiction of the process of breaking down an image into usable information 

required for the analysis and classification of images can be seen in Figure 3. 
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Figure 3: Example of image breakdown for analysis 
 

 
 

 

 
Source: (SONKA, 2014) 

 

 

 

 

 

2.3.3 Robotics 

 
 

The term ‘robot’ was coined by the writer Karel Capek, is was defined by the Robot 

Institute of America in 1979 as “A reprogrammable, multifunctional manipulator designed to 

move material, parts, tools, or specialized devices through various programmed motions for 

the performance of a variety of tasks.” 

As it has happened in many areas, robotics saw may advancements in its area due the 

the use and implementation of ML techniques, being it during manufacturing of robots, 

testing or software development. This increase trend was is pointed out by (FAGGELLA, 

2016): “Like many innovative technological fields today, robotics has and is being influenced 

and in some directions steered by machine learning technologies.” 
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One such example of the use of ML techniques within robotics can be seen in the 

medical area, where assistive robots are being use to sense and process sensory information 

that allows them to performs actions that help seniors and people with disabilities. 

Another good example that has attracted a lot of attention lately are the warehouses 

assisted by robots, where humans only select the client order to be collected and the robots go 

around the warehouse picking boxes that contain the items asked for. Those robots rely on 

many sensors and cameras that allow them to navigate complex mazes, pick and stack heavy 

boxes and bring them to the desired location, all that without crashing with anything 

(FAGGELLA, 2016). 

As pointed out by (FAGGELLA, 2016), “The slight difference between the two may 

be in kinematics as applied to robot vision, which encompasses reference frame calibration 

and a robot’s ability to physically affect its environment.”, making the process more complex 

than regular computer vision. 

 
2.3.4 Speech Recognition 

 
 

Speech recognition is not new to our society, we have had some machines and 

computers with that characteristic for decades, but only recently with the advent of ML it was 

possible for it to be used outside of specific controlled environments or scenarios, as pointed 

out by (FELLOW et al., 2013) “In recent years, the machine learning (ML) and automatic 

speech recognition (ASR) communities have had increasing influences on each other.” 

The technology behind speech recognition require the following steps: 

 
 

• First a audio file is created by recording a sound. 

• Then the audio file is sampled and turned into numbers by analyzing its wave heights 

during timed periods. 

• With the resulting numbers, the audio can be preprocessed and after the creation of 

sample groups, that allow a graph to be plotted. 

• To facilitate the ML work, the sound is broken down into smaller pieces that than can 

be used to create a spectrogram of the sound. 

• ML than works on pieces of the spectrogram to interpret the sounds made, learn, 

understand and offer the information required for the system to respond. 
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This process allowed ML to be used at its full potential and provided many benefits to 

the field, allowing for phones, smart watches, gadgets and automated homes to perfectly 

understand their owners and even adapt to them, despite their accents, voice pitch or voice 

volume. This incredible process was described by (GEITGEY, 2016): “For just $50, you can 

get an Amazon Echo Dot — a magic box that allows you to order pizza, get a weather report or 

even buy trash bags — just by speaking out loud.” 

 
2.3.5 Expert Systems 

 
 

For many decades expert systems have been used in many areas to help solve complex 

problems, its first architecture was created using basic programming rules such as if-else and 

procedural coding. The most interesting aspect of expert systems is the fact that it allows for 

programs to be used by people with almost no understanding of coding, due its the 

information used being explicit instead of implicit in the code. 

After a phase of acceptance and widespread use and recognition of its benefits, expert 

systems were called out by its limitations, this need limitations pointed out for the need of 

renewal in the field as pointed out (SELFRIDGE et al, 1987): “We believe that these next- 

generation expert systems will have to be based on cognitive models of expert human 

reasoning and learning in order to perform with the ability of a human expert.” 

In recent years some signs of innovation were show as Machine Learning was 

introduced and some aspects of expert systems were than adjusted and helped create new 

segments such as recommendation systems. 

 
2.3.6 Natural Language Processing 

 
 

Natural Language Processing (NLP) has been studied for over 50 years and became a 

field by itself with the advent of computers. NLP is defined as the study of automatic 

manipulation and understanding of natural languages evolved by man. 

One example of the use of Machine Learning in partnership with NLP can be seen in 

the sentiment analysis conducted on movie reviews posted by users on the website Rotten 

Tomatoes. The experience conducted in the website resulted in some expressive results 
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related to sentence analysis as demonstrated by (IYYER et al, 2015): “We introduce a deep 

unordered model that obtains near state-of-the-art accuracies on a variety of sentence and 

document-level tasks with just minutes of training time on an average laptop computer.” 

Another good example comes from the machine translation segment within NLP, 

where a computer is responsible for converting a source text from one language to another. A 

research paper which translated texts from English to French using ML techniques presented 

the following results: “… we obtained a BLEU score of 34.81 by directly extracting 

translations from an ensemble of 5 deep LSTMs (...). This is by far the best result achieved by 

direct translation with large neural networks” (SUTSKEVER et. al, 2014). 

 

2.3.7 Neural Networks 
 

Neural networks is a paradigm for processing information, inspired by the way our 

nervous system works. Just as in our brain contains neurons that are connected and work 

together to process everything we need, so do neural networks, where its architecture is made 

of interconnected neuron models in a way they can pass and receive information from one to 

another, as can be seen in Figure 4. 

 

Figure 4: Example of neural network model 
 

 
 

 
 

Source: (NIELSEN,2017) 

 

The first concept of an artificial neuron was created during the 1950 and 1960 period 

by the scientist Frank Rosenblatt, inspired by earlier works from Warren McCulloch and 
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Walter Pitts. That model consisted artificial neuron model called Perceptron, who received of 

multiple binary inputs and produced a single binary output (NIELSEN, 2017). 

The most accepted artificial neuron model used currently is the sigmoid neuron, who 

can output values between 0 and 1, based on the result of a sigmoid function calculated using 

all the input values received by the neuron. That change in the sigmoid neurons solved the 

problem of value flipping that happened with perceptrons as state by (NIELSEN, 2017): “... a 

small change in the weights or bias of any single perceptron in the network can sometimes 

cause the output of that perceptron to completely flip, say from 0 to 1.” 

A common use of Machine Learning for teaching systems can be seen in the 

handwriting recognition field, where systems responsible for recognition are trained with ML 

and easy reach levels of accuracy of 99% or more with state-of-art works. This allows for 

such systems to be so reliable that even banks use them to validate checks and documents that 

require user signatures (NIELSEN, 2017). 

 
2.4 Machine Learning groups of study 

 
 

Machine Learning has been studied for many decades, and during all those years many 

groups appeared, offering different ways of implementing ML systems, based on field of 

science they were most close to, as pointed out by (DOMINGOS, 2015): “The search for the 

master algorithm is difficult but also stimulated by the rival schools of thought that exist in 

the area of machine learning.” 

The Symbologists tackled the ML problem with the idea that all intelligence can be 

reduced to the manipulation of symbols, much as am mathematical equation is solved by 

replacing expressions. This group believes that some preexisting knowledge is necessary prior 

to learning and for that mean use inverse deduction to achieve their solutions. 

The Connectionists believe that imitate learning they must look at how our brains 

work, so as the brain works by adjusting neuron connection strength, so does their 

implementation. This group works by comparing the exit value with the desired value and 

adjust its connections accordingly, their solution is called backpropagation. 

The Evolutionaries inspire themselves in how the planet evolved, and for that they 

believe that the best way to learn is by using a natural selection approach, to solve a structure 

of learning. This groups developed a method called genetic programming that works by 
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making small changes in values and checking if a better one is found and then used as the 

default value. 

The Bayesians understand that for this problem to be solved, the most important aspect 

that need to be solved is the uncertainty, because all learning is uncertain and need to be 

tested before it can be considered correct. The solution created by this group is called 

probabilistic inference which allow them to incorporate new evidences in the data used as 

quickly and efficient as possible. 

The last group are the Analogizers, they believe that the best way to handle learning is 

by recognizing similarities between situations, from there they can infer other similarities. 

Their bigged problem is to how they can determine similarities, for that they developed the 

kernel machines, which work by determining which memories experiences should be 

remembered and how to combine them with new ones. 

Each group tackled the ML problem with a different perspective, has different 

difficulties and offer different ways to solve problems, they even fought each other at times, 

but their combined work allowed the ML community to the level of importance they are 

today, as can be seen in Table 1. 

 
Table 1: Machine Learning groups information 

 

Group Origins Master Algorithm 

Symbologists Logic, philosophy Inverse deduction 

Connectionists Neuroscience Backpropagation 

Evolutionaries Evolutionary biology Genetic programming 

Bayesians Statistics Probabilistic inference 

Analogizers Psychology Kernel machines 

Source: (DOMINGOS, 2015) 

 

 

2.5 Reinforcement Learning 

 
 

Reinforcement Learning (RL) is a sub area of Machine Learning that is focused on 

how to teach agents the best actions to take on a specific scenarios, this is done by letting the 

agent take an action, than analyzing the outcome and comparing that to what is considered a 

good outcome. The idea is that with each cycle of action, reward and analyzes, the agent will 

gradually understand what actions produce the best outcomes and will steer toward those 

actions. 
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In Figure 5 we can see the basic representation of process agents go trough during 

their cycle of action, rewards and analyzes. 

 

Figure 5: Representation of agent behavior 
 

 
 

Source: (SHAIKH, 2017) 

 

 

Reinforcement Learning was responsible for many great feasts in the latest years, 

being considered a buzzword in the IT community, this influx of interest also attracted many 

new followers, researchers and investors to the area, looking forward to new discoveries and 

opportunities (SHAIKH, 2017) . 

One examples of RL being at the spotlight was seen during a professional gaming 

tournament called The International, where team of players fought each other competing for 

prizes of a total of $24,787,916. During the tournament a presentation was made, putting a 

agent trained with RL to play Dota 2 against the best Dota 2 players in the world, the result 

left the crowd ecstatic as the agent won easily against all human opponents (SHAIKH, 2017) . 

The agent was created by the non profit research company OpenAI, which after developing 

the agent, trained it for over four months against itself in countless games where he 

learning on its own how to play game. During those four months the bot went from 

completely clueless agent that didn’t knew how to navigate the map, to being able to beat the 

top world player handily (OpenAI, 2017). 

In Figure 6 we can see the evolution of the agent match making rating (MMR) 

evolution during the 4 month training period prior to the tournament. The timeline represents 

that 15% of players are below 1.5k MMR, 58% of players are below 3k and 99% are below 

7.5k (OpenAI, 2017). 
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Figure 6: Agent evolution graph. 
 

 
 

 

Source: (OPENAI BLOG POST, 2017) 

 

2.6 Games 

 
 

Games are a normal part of our society and history suggest that it has been so for 

thousands of years, but nowadays are commonly known and used just as a form of 

entertainment, where in the beginning it had a much more important role. 

During the early days of our history games had a vital role within communities, they 

helped people pass time, but not like today, they literally helped people to relax and forget at 

least for a while problems like lack of food, thirsty, health problems or dangers. 

Some of the oldest dated games that we have evidence are thousands of year old and 

help us understand how important games were in the human culture, as said by (KUMAR et 

al, 2017): “Human history and games are inextricably intertwined. Irrefutable evidence 

resounds down through the ages that fun and games are not frivolous pursuits per see, instead, 

they come naturally to us as essential parts of being alive.” 

Board games are one of the most common games we play, one of the oldest board 

game found is dated over five thousand years old, the rules are not known but it was played 

by the Egyptians. In Figure 7 we can see a depiction made by old societies of games being 

played. 
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Figure 7: Depiction of old societies playing games 
 
 

 
 

Source: (KUMAR et al, 2017) 

 

Another old example of the game the endured till today are the dice, who are so 

common and used as the main game or as a tool for of a plethora of other games. Dice are 

dated with with more than three thousand years old, as pointed by (KUMAR et al, 2017): “… 

archaeologists discovered a 3,000-year-old set of dice! We don’t know exactly what games 

those early Persians would have played with them, but the popularity of dice has endured 

throughout the centuries.” 

 
2.6.1 Electronic games 

 
 

Electronic games began its history back in 1950 with the creation of the first 

“machines” that allowed people to interact with it and play a tic-tac-toe game, followed by 

one that resembled a kind of 2D tennis match. But the first game created and sold to be played 

in a “video-game” attached to a television was Pong in the 70s, who then helped electronics 

games to spread in the US (KAPLAN, 2013). 

Following the creation of video-games, the arcades were created where players could 

spend a coin to play in the machine, creating with that stores that were social hubs of for 

many people and were many friendships were created with the help of games. In the arcade 
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genre the first success game was Space Invaders, which was a huge success in the US and 

Japan as stated by (KAPLAN, 2013): “In two different countries on opposite sides of the 

globe, Japanese and American teenagers, although they could not speak to one another, were 

having the same experiences thanks to a video game.” 

Personal computers started to appear during the 70's, with the models that helped the 

development of games appearing in 1977 with the Commodore, Apple II and TRS-80. With 

those new types of computers, games could become a bit more complex, using a little bit 

more processing power and memory, offering good results as stated by (KAPLAN, 2013): 

“The development of video games for the personal computer platform expanded the ability of 

video games to act as media by allowing complex stories to be told and new forms of 

interaction to take place between players.” 

During the latest decades much has evolved in the game industry, computer became 

more powerful and so did consoles, even sprouting a “console war” with companies fighting 

to have the best games, console and most faithful followers. More recently new medias for 

games appeared, with smartphones and tablets having such good hardware as to be able to run 

modern titles with good performance and graphics, thus creating a new segment in the 

industry (KAPLAN, 2013). 

 
Figure 8: Global market for games 

 

 

 
Source: (NEWZOO Website, 2017). 
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Electronic games are a huge segment in the modern society, being it analyzed trough a 

commercial, social or creative perspective, it moves billions of dollars every year, influence 

whole generations of players and spread incredible narratives. With a market so big that 

shadows the movie and music industry, the importance of gaming can be seen in Figure 8, 

which shows global estimates (NEWZOO, 2017). 

 
2.6.2 AI in games 

 
 

Artificial Intelligence is an area inside the game industry responsible for making the 

games look smart, being it with enemies that behave with human nature, make reasonable 

pathfinding decisions or simply choose the best tool/weapon for a specific situation 

(MILLINGTON, 2009). 

All games have some sort of AI responsible for all manner of jobs, but prior to 1990 all 

of them used similar techniques which relied on hard coded choices based on if-else decisions 

that determined the next action. During 90's games did still relied on defined states but started 

to introduce AI improving techniques, such as sense simulation, which allowed enemies to 

notice things such as dead friends and react accordingly. 

During the next years other advancements were made, such as strategy games 

introducing noticeable AI pathfinding for units and formation motion for groups, while in the 

2000's some games presented things such as neural network-based units. Some other topics 

still were not solved, like RPGs using tree-based dialog systems or sports games having 

trouble with some dynamically calculation required for sports simulation (MILLINGTON, 

2009). 

While the need for complex AI depends on each game, with some requiring an 

advanced AI to be enjoyable, others don’t see much improvement by implementing a complex 

system, relying on basic solutions. The common use for AI in most modern games is 

described by (MILLINGTON, 2009): “The AI in most modern games address three basic 

needs: the ability to move characters, the ability to make decisions about where to move, and 

the ability to think tactically or strategically.” 
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3 DEVELOPMENT 

 

 

 

 
This section presents details relative to the tests, research, programming, and results 

obtained during the experimentation phase. A special focus is given to neural network 

paradigms and sets of algorithms and their characteristics related to the problems in 

discussion. Also, the tools that were used are discussed, such as Starcraft II, SC2LE, and 

TensorFlow. All are either at the core of the work or present significant benefits that justify 

their use at one of the later stages. 

 

3.1 Implementation tools 

 

The following tools were be used in this implementation: 

 

• Starcraft II 

• SC2LE 

• TensorFlow machine intelligence library 

• OpenAI Baselines for DQN and A2C implementations 

 

 
3.1.1 Starcraft II 

 
 

Starcraft II is the second game of the Starcraft franchise developed by Blizzard 

Entertainment and released in 2007. The first game of the franchise was released in 1998, 

being a huge success. During its period it developed a community of developers who built 

scripted bots to fight each other in competitions to see which was the best (DEEPMIND et al, 

2017). 

The second game was also considered a success, offering the following challenges to 

the RL agents: 

 
• Two resources that need to be mined and managed (minerals and gas). 

• Construction of production buildings. 

• Different units and buildings, each with its own actions and options. 
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• Completely different races. 

• Large maps with different terrain level. 

• Land and air units. 

• Training of an army. 

• Management of hundreds of units during battle. 

• Imperfect information due to the fog-of-war effect. 

• Decisions that may only see their consequences later in the game. 

 
 

With the release of SC2 the developers behind the game decided to offer tools to help 

the community build their bots. Following the initiatives of Deepmind, an Artificial 

Intelligence research company, they partnered to create the tools necessary. 

Figure 9 is possible to see a Starcraft II game being played, showing some of its units, 

structures and player interface. 

 

 
Figure 9: Starcraft II Gameplay 

 

 
 

 

Source: (ROCKPAPERSHOTGUN STARCRAFT II REVIEW, 2017) 
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3.1.2 SC2LE 

 
 

Starcraft II Learning Environment (SC2LE) is a set of tools created to allow the 

community of AI research using the Starcraft II game. It is composed of the following tools: 

 
• The SC2client-proto, a Machine Learning API created by Blizzard that allows direct 

control of the game. 

• The PySC2, a toolset written in Python that facilitates the use of the Blizzard API with 

the agents. 

• Packs of replays from SC2 with more than 500 thousand replays to be used for RL. 

• RL mini-games to help with the research of specific areas of the game, allowing for 

the training of specific areas of the game, removing complexity involved with the need 

for the agents to tackle the whole game from start. 

 
Figure 10 shows a representation of the SC2LE components during its use by an agent, 

demonstrating the input, decision making, and reward analyze flow. 

 
Figure 10: Representation of SC2LE flow 

 

 

 
 

 

 
 

Source: (DEEPMIND, 2017) 
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Figure 11 shows a representation of the image of the game broken down into layers 

that related to the various kinds of information necessary for the agents to make decisions 

Figure 11: Depiction of the different information layers 

 

 
 

 

 
 

Source: (DEEPMIND, 2017) 

 

 

The process of interacting with the screen is described in the Figure 12, where a 

comparison of the human and agent inputs is made. 
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Figure 12: Comparison between the player and the agent of the inputs 
 

 

 

 

Source: (DEEPMIND, 2017) 

 

 

3.1.3 Agents 

 
 

The SC2LE agents consist of stages that are similar no matter which mini-game or RL 

algorithm is being used. The process starts reading the current game state and doing an 

analysis of the rewards received from the last episode, which then is used in conjunction with 

the current neural network to choose the next action that’s going to be taken. 

The agent in this work was built using the Python language and packages available for 

its environment, such as the OpenAI Baselines. This structure allowed the agent to be created 

with a lean structure that only diverged when defining the RL algorithm that was selected for 

the agent to be run with. That is, most of the code was generic enough to provide a testbed for 

comparison of distinct RL algorithms. 

 
3.1.4 Mini-games 

 
 

SC2LE mini-games consist of small Starcraft II maps that isolate elements of the full 

game, allowing for agents to be created and tested in a much simpler environment and with a 

smaller degree of complexity. Those mini-games break the full game into smaller tasks such 
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as move to specific locations, collect resources such as minerals and gas, build units, defeat 

enemies and find the enemies themselves. 

 
Collect Mineral Shards 

 
 

The first mini-game used was the Collect Minerals, which is one of the most basic 

tasks required to master in order to successfully play the game. This mini-game challenges the 

agent to collect the game resource as efficient as possible controlling two individual units at 

the same time. 

In this map the agent starts with two marine units and must use them to collect all 20 

mineral shards available on the map, as shown in Figure 13. 

 

Figure 13: Starting state of the mini-game 

 

 

Source: AUTHOR (2018) 

 

 

Each episode of the mini-game lasts for 120 seconds, time during which the agent will 

try to collect as much minerals as possible, if all the initial 20 mineral are collected, a new set 

of 20 minerals are spawned. An example of the mini-game session can be seen in Figure 14. 
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Figure 14: Mini-game being played 
 
 

 

Source: AUTHOR (2018) 

 

 

The final score of the agent is based on the amount of minerals collected during each 

episode, and can be seen on the top left corner of the mini-game screen or printed to the 

console, as shown in Figure 15. 

 

Figure 15: Scores by episode 

 

Source: AUTHOR (2018) 
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Defeat Banelings and Zerglings 

 
 

The second mini-game used was the Defeat Zerglings and Banelings, which mimics 

the challenge the agent with the combat mechanic from the game, requiring the agent to 

adeptly use the units available to defeat the enemies. In this map, the agent starts with nine 

marine units and must defeat six zerglings units and four banelings units, as displayed in 

Figure 16. 

 

Figure 16: Mini-game being played 

 

 
Source: AUTHOR (2018) 

 

Each episode of the mini-game lasts for 120 seconds, the time during which the agent 

will try to kill as many enemies as possible. If all the enemies are defeated, a new set of six 

zerglings and four banelings are spawned and the agent receives four extra marine units at full 

health. An example of the mini-game session can be seen in Figure 17. 
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Figure 17: Mini-game being played 
 
 

 
Source: AUTHOR (2018) 

 

 

The final score of the agent is based on the amount of enemies killed during the 

episode, and can be seen on the top left corner of the mini-game screen or printed to the 

console, as shown in Figure 18. 

 

Figure 18: Mini-game being played 
 
 

Source: AUTHOR (2018) 
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3.1.5 TensorFlow 

 
 

TensorFlow is a software library for numerical computation through graphs. Nodes 

represent mathematical operations and the edges represent the data arrays communicated 

between different nodes. It was originally created during the Google Brain project, and since 

then it proved to be general enough to be applied in a wide range of cases and domains. 

TensorFlow has been applied in a variety of real word cases with success. Some 

examples are its use on Google for search ranking, computer vision models, automatic 

generation of email responses, identification of promising drug candidates and optical 

recognition that enables real-time translation. 

A demonstration of the neural networks created by Tensorflow can be seen in Figure 

19, with an example of input, hidden layers, and possible outputs. 

 

Figure 19: Tensorflow neural network example. 
 
 

 
 

Source: (TENSORFLOW WEBSITE, 2017) 

 

 

 

 

3.2 OpenAI Baselines 
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OpenAI Baselines is a collection of high-quality Reinforcement Learning algorithms, 

already being vastly used in many academic and commercial projects and studies. The full 

OpenAI Baseline is composed of the following implementations: 

• A2C 

• ACER 

• ACKR 

• DDPG 

• DQN 

• GAIL 

• HER 

• PPO1 

• PPO2 

• TRPO 

From the available implementations, the Deep Queue Network(DQN) and the 

Advantage Actor-Critic (A2C) were selected for being the most commonly used in academic 

projects. 

 
3.2.1 Advantage Actor Critic – A2C 

 
 

In general, the idea for Reinforcement Learning algorithms is to have an agent that 

receives the state of an environment and then takes actions while trying to maximize its 

rewards. The Advantage Actor-Critic implementation fulfills that premise in the following 

steps. 

First, it receives the current state of the environment and uses it to generate two 

outputs. One output is the estimate of rewards he expects to find ahead, which is called ‘state 

value’ and is meant to be the ‘critic’. The second output is a recommendation of what action 

to take, called ‘policy’, and is meant to be ‘actor’. 

Each step of state-action-reward results in the recording of the state, reward expected, 

action taken and reward found. After collecting the information of three iterations, the agent 

adjusts its critic based on the estimates he had before and the results collected, calculating the 

difference between what he expected, what he received and what lead him to take the action. 
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The algorithm also makes sure to ensure that the agent won't always choose the safest 

option but that has a low potential for rewards. That is done by subtracting a value called 

‘entropy’ from the loss function, which is responsible for measuring the performance of the 

actions. 

A schematic implementation of the A2C model can be seen on Figure 20, using a 

robot as an example scenario. 

 

Figure 20: Actor – Critic Model. 
 

 

 
Source: (MEDIUM BLOG POST, 2017) 

 

 

3.2.2 Deep Queue Learning – DQN 

 
 

The Deep Queue Learning algorithm is a direct evolution from the Q-Learning 

algorithm. It was created to solve the lack of generality, which is a weakness present in the Q- 

Learning implementations. So even though Q-Learning is a very good RL algorithm, that lack 

of generality makes it unable to estimate the outcome values for states that it has not yet seen. 

DQN improves the Q-Learning algorithm by introducing a neural network to estimate 

the reward values, giving it the ability to store the results already obtained by specific action- 

state decisions taken. Another improvement is the fact that the DQN implementation uses 

randomly picked batches of experiences from its pool, to help the network to develop itself 

with a broad range of experiences. 

The third addition to the Q-Learning implementation is the use of a second network 

during the training process, responsible for reward estimates that are used in the loss function 
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during the training process. By having separate networks for each area, DQN reduces the risk 

of estimations values spiraling out of control, resulting into a feedback loop of state, reward 

estimates and actions are taken. 

A schematic implementation of the DQN model can be seen in Figure 21. 
 

 

Figure 21: Deep Queue Network Model. 
 
 

 

Source: (DNDDNJS WEBSITE, 2018) 

 

 

 

 

 
 

3.3 Communication 

 

 
The setup necessary for the training requires that multiple separate parts work 

together, such as the communication between the agent and the game, which allows the agent 

to send commands to the game and receive game state. 

The SC2client-proto is a Machine Learning API created by the SC2 game creator 

Blizzard, being an interface that offers full control of the game, exposing all the necessary 

commands and information for agents, bots and replay analyzers to work. 

To facilitate the task of creating agents that play SC2, DeepMind created the PySC2, 

which consists of a set of tools that exposes SC2client-proto API as a Python RL environment 

package. It provides an interface for developers to create the agents without the need to use 
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direct commands to the game, offering an easy-to-use wrapper for the RL agents to interact 

with SC2. 

The mini-games being used for the agents training consist of SC2 custom maps that 

were created with specific sets of rules, and can only be run using the SC2 game client. SC2 

maps are created using the Blizzard Map creator tool and all the data related to each map is 

stored in a ‘.SC2Map’ format file. 
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4 RESULTS 
 

 

 

This chapter presents the results and analyses conducted during the final stage of this 

work. 
 

 

 

 

4.1 Methodology 

 

 
Training was divided into two groups, defined by the mini-game being played, with 

each individual group of tests being composed by sessions of the agent playing the mini-game 

with both RL algorithms and the learning parameters being tweaked. 

Each training session was limited to 100 episodes of the mini-game being played by 

the agent, focusing the attention on the score value obtained by each set of algorithm and 

parameters during the session. 

Each training session data generated was collected as well as the trained model, which 

allowed the analysis of the score by episode, as well as the use of the pre-trained agent model 

on side-by-side tests with other agents. 

 
4.2 Agent Setup 

 
 

The agent has a set of parameters that defines some aspects of its behavior during 

training, those parameters being independent of the RL algorithm being used. The relevant 

parameters are the following: 

 
• Discount: reward discount for the agent, can be tweaked to test the reward influence 

during training; 

• Loss Value Weight: how much a loss weight, can be tweaked to test the influence of a 

loss during the training; 

• Entropy: correspond to the spread of actions probabilities, low entropy means one 

dominant action, while high entropy means multiple actions with similar probability. 
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Can be tweaked to test how it affects the agent exploration of new actions or 

strategies. 

 
The agent setup for the training sessions was defined as one setup with default values 

for all described parameters for both algorithms and one setup with an altered entropy value 

from 1e-6 to 1e-5 for both algorithms, described in Table 2. 

 
Table 2: Agent Parameters Setup Table 

 

 Default Setup Custom Setup 

Discount value 1 1 

Loss Weight value 1 1 

Entropy value 1e-6 1e-5 

Source: AUTHOR (2018) 

 

 
4.3 Results 

 
 

This section presents all the results collected during the tests, demonstrating the most 

significant values in each test, resulting graphs and a table of values for comparison. 

 

4.3.1 Collect Mineral results 
 

The first test was conducted using the A2C algorithm with default parameters. The 

scores obtained by the agent ranged from 10 to 29, resulting in the graph seen in Figure 22. 

 
Figure 22: A2C With Default Parameters Results For Collect Minerals 

 
 

 
 

Source: AUTHOR (2018) 
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The second test was conducted using the DQN algorithm with default parameters. The 

scores obtained by the agent ranged from 10 to 24, resulting in the graph seen in Figure 23. 

 

Figure 23: DQN With Default Parameters Results For Collect Minerals 

 

 
 

Source: AUTHOR (2018) 

 

 

 

The third test conducted was the ‘Collect Minerals’ mini-game using the A2C 

algorithm with custom parameters. The scores obtained by the agent ranged from 8 to 36, 

resulting in the graph seen in Figure 24. 

 

Figure 24: A2C With Custom Parameters Results For Collect Minerals 
 
 

 

Source: AUTHOR (2018) 
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The fourth test conducted was the ‘Collect Minerals’ mini-game using the A2C 

algorithm with custom value parameters. The scores obtained by the agent ranged from 7 to 

33, resulting in the graph seen in Figure 25. 

Figure 25: DQN With Custom Parameters Results For Collect Minerals 
 
 

 

 

 
Source: AUTHOR (2018) 

 

 

In Table 3 are presented the lowest, highest and average values obtained by each 

algorithm during the ‘Collect Mineral’ mini-game. 

 
Table 3: Collect Mineral Shards Results Table 

 

 A2C DQN Custom A2C Custom DQN 

Lowest value 10 10 8 7 

Highest value 29 24 36 33 

Average value 16,18 15,88 17,07 16,65 

Source: AUTHOR (2018) 

 

 

 
 

4.3.2 Defeat Zerglings results 
 

The first test was conducted using the A2C algorithm with default parameters. The 

scores obtained by the agent ranged from 6 to 108, resulting in the graph seen in Figure 26. 
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Figure 26: A2C Results For Defeat Zerglings 

 

 

Source: AUTHOR (2018) 

 

 

The second test was conducted using the DQN algorithm with default parameters. The 

scores obtained by the agent ranged from 1 to 77, resulting in the graph seen in Figure 27. 

 

Figure 27: DQN Results For Defeat Zerglings 
 
 

 
 

Source: AUTHOR (2018) 

 

 

The third test was conducted using the A2C algorithm with custom parameters. The 

scores obtained by the agent ranged from 1 to 77, resulting in the graph seen in Figure 28. 
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Figure 28: A2C With Custom Parameters Results For Defeat Zerglings 
 
 

 

Source: AUTHOR (2018) 

 

 

The fourth test was conducted using the DQN algorithm with custom parameters. The 

scores obtained by the agent ranged from 6 to 93, resulting in the graph seen in Figure 29. 

 

Figure 29: DQN With Custom Parameters Results For Defeat Zerglings 
 
 

 

Source: AUTHOR (2018) 

 

 

In Table 4 are presented the lowest, highest and average of values obtained by each 

algorithm during the ‘Defeat Zerglings’ mini-game 
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Table 4: Defeat Zerglings Results Table 
 

 A2C DQN Custom A2C Custom DQN 

Lowest value 1 1 1 6 

Highest value 82 77 77 93 

Average value 35,21 30,6 28,59 29,69 

Source: AUTHOR (2018) 

 

 

4.4 Summary 

 
 

The results from the Collect Minerals mini-game showed that the A2C algorithm fared 

better than the DQN on both the default and custom parameters tests. The entropy parameter 

changes seemed to have influenced the resulting values, resulting in a bigger difference range 

between the lowest and highest scores, which also resulted in higher score average values. 

The results from the “Defeat Zerglings’ mini-game showed similar results for the A2C 

and DQN algorithm, with the A2C faring better with default value parameters while the DQN 

did better on the custom ones. The entropy parameter changes drove the DQN scores up and 

the A2C down, resulting in a bigger difference range between lowest and highest scores, 

which resulted in lower score average values. 

Considering the results obtained, the A2C seems to offer the best results when used for 

Reinforcement Learning agents running Starcraft II mini-games. The parameter changes 

during the ‘Defeat Zerglings’ that resulted in the DQN doing better at that test, point to the 

notion that a finer tweak in the parameters can influence the final results, for best or worst. 

The test consisted in a total of eight training sessions, four on each mini-game, being 

two with each algorithm, one with default and one with custom parameters. 

Each Collect Minerals training session took close to one hour, while the Defeat 

Zerglings varied between 30 to 50 minutes because the episodes could end sooner if the agent 

lost all its units. 

The machine used for the tests was a low end desktop configuration, with a AMD 

Phenom II 955 running on 3.200MHz clock and using 8Gb of DDR3 ram running on 

1333Mhz. Taking in consideration the computer specs, it’s reasonable to affirm that the time 

taken for the test could be considerable lower using a more computationally powerful 

machine. 
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5 CONCLUSION 

 

 

This work has briefly analyzed the current state of two Reinforcement Learning 

algorithms applied to a complex and modern computer strategy game. Tests were conducted 

using default and custom agent parameters, offering some preliminary answers about how 

each algorithm would achieve success on each mini-game and how the parameters might 

affect them. 

While each test session only amounted for a small number of episodes, we confirmed 

that changes in parameters and algorithm being used on each mini-game do significantly 

affect the results, even without the agent achieving a convergence point. 

The entropy being selected to be the changed parameter showed us that it can have a 

heavy influence on the results, leaving open the question about how the other parameters 

would affect the tests. 

Related works focus on convergence, comparing algorithms and the time required for 

each to achieve the convergence point, while this work focused more on fine comparison of 

algorithm results and parameters on a smaller episode range of episodes. 

 
5.1 Future Work 

 
 

This work used a reduced amount of episodes for each training session, that decision 

forces the analyses of the results to look for sharp changes in behavior based on the 

parameters and algorithm being tested. 

Future works that enjoy the benefits of dedicated servers with hardware specific for 

mathematical calculations could extend the training sessions by a large amount, being able to 

achieve convergence in results as the agents learn the best strategies for each mini-map 

Another interesting task is the study of Reinforcement Learning algorithms that were 

not tested in this work, followed by the challenge of training agents to play the whole game, 

which would require it master all of the tasks previous seen individually in the mini-games. 
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