

Revista Destaques Acadêmicos, Lajeado, v. 9, n. 4, 2017. ISSN 2176-3070 DOI: http://dx.doi.org/10.22410/issn.2176-3070.v9i4a2017.1676 www.univates.br/revistas

DESEMPENHO TÉRMICO E EFICIÊNCIA ENERGÉTICA: ESTUDO DE CASO

Aline Patrícia Hunemeier¹, Amanda Martini Spezia²

Resumo: Este trabalho tem por objetivo avaliar as condições de desempenho térmico de três ambientes de uma residência de 131,61m² no município de Estrela/RS. Para conhecer o desempenho térmico foi calculado o fluxo térmico de cada ambiente, através de uma série de fórmulas apresentadas, somando o calor transmitido por equipamentos, iluminação e pessoas que frequentam o ambiente. Dimensionou-se os equipamentos de ar condicionado e foi feita uma simulação do gasto de kW.h e da conta mensal de energia. Tendo em vista o grande gasto energético, foi apresentada uma solução com a adoção de novos conjuntos de materiais.

Palavras-chave: Desempenho térmico. Eficiência energética. Economia de energia.

1 INTRODUÇÃO

Através do progresso de tecnologias, a concepção de projetos arquitetônicos passou a desprezar o clima externo, desconsiderando estratégias de desempenho térmico e eficiência energética, gerando um microclima interno. Para esse microclima interno ser alcançado, a edificação passou a contar com equipamentos de aquecimento, resfriamento e ventilação artificiais que consomem enormes quantidades de energia. Dessa forma, as edificações se tornaram totalmente dependentes do consumo de energia elétrica.

No entanto, nas últimas décadas as questões relacionadas à sustentabilidade e o desenvolvimento sustentável ganhou mais destaque quanto às necessidades de modificar a forma com que a sociedade consome. Sendo assim, o setor da construção civil, por ser um dos que mais causa impactos negativos ao ambiente, começou a passar por transformações. Aliado a esse cenário, o aumento do consumo de energia elétrica, ocasionado pelo aumento da população e da industrialização do país, causou racionamentos de energia em 2001. Percebeu-se que a energia não é infinita, e tendo em vista que a relação

¹ Graduanda em Engenharia Civil. Universidade do Vale do Taquari UNIVATES.

² Graduanda em Engenharia Civil. Universidade do Vale do Taquari UNIVATES.

entre o consumo de energia e o envoltório da edificação é inegável (FAVOINO, JIN E OVEREND, 2017), medidas e incentivos para redução do consumo de energia foram estabelecidas. Algumas normas foram criadas para definir, entre outras condições, o desempenho térmico mínimo de uma edificação, como por exemplo, a NBR 15575-1 (ABNT, 2013), que está em vigor atualmente.

De acordo com Peralta (2006), o desempenho térmico da edificação sofre influência de fontes internas e externas. A respeito das fontes externas, segundo Givoni (1998), os materiais usados na construção das edificações influenciam diretamente entre a relação da temperatura externa e condições de radiação com a temperatura interna em edificações não climatizadas. Os elementos que compõe fachadas e coberturas são os que mais têm influência como fonte externa, e sendo assim, no consumo de energia. Dessa forma, é necessário mensurar grandezas como capacidade térmica e transmitância térmica desses elementos. Na porção da carga interna, é necessário determinar fontes internas de calor, como equipamentos, pessoas que utilizam o ambiente e iluminação do local. Tendo o estudo dessas variáveis, muitas vezes é possível sugerir outra combinação de materiais e aparelhos utilizados, para um melhor desempenho térmico da edificação.

2 OBJETIVOS

O intuito desse artigo é analisar o desempenho térmico de três ambientes de uma residência localizada no município de Estrela/RS, e encontrar uma estratégia para a melhora no desempenho térmico do local, utilizando um novo conjunto de materiais a serem elaborados.

2.1 Delimitação do estudo

Este estudo realizará uma análise do desempenho térmico de três ambientes de uma residência, sendo estes caracterizados por uma sala de jantar com área de 20,955 m²; e dois dormitórios com 10,80 m² cada um. Para o cálculo serão considerados apenas as paredes externas e a cobertura destes cômodos, sem avaliar os banheiros e demais ambientes do local. Desta forma, as faces analisadas na sala de jantar são as voltadas para o norte e oeste; na suíte 1 as faces norte e leste e na suíte 2 apenas a sul.

3 MÉTODO

3.1 Aspectos Gerais

O método utilizado para a realização do trabalho constitui-se de seis partes, explicadas a seguir:

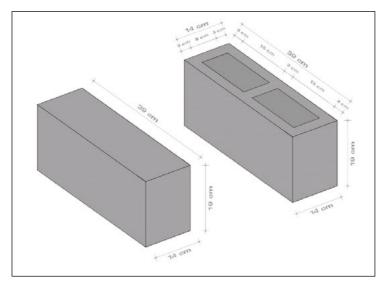
- Analisar o desempenho térmico da residência atual conforme projeto;

- Verificar se há necessidade/possibilidade de modificar algum material construtivo para melhorar a eficiência da residência;
 - Definir os materiais a serem substituídos;
- Reanalisar o desempenho térmico da residência com as modificações de materiais realizadas;
 - Verificar a melhora na eficiência, comparando os dois casos;
 - Dimensionamento do ar condicionado ideal para cada ambiente.

3.2 Edificação Avaliada

A edificação avaliada é uma residência no município de Estrela/RS, com área total equivalente a 131,61 m², como mostra a Figura 1.

Figura 1 – Planta baixa da residência avaliada


Fonte: das autoras

3.3 Composições construtivas dos ambientes

A composição construtiva da residência analisada, conforme projeto, é com modulação de bloco de concreto em espessura de 14 cm, conforme apresentado na Figura 2. A parede é constituída de bloco vazado até a altura de 2,6 m, observado na Figura 3. E após conta com uma camada de bloco de

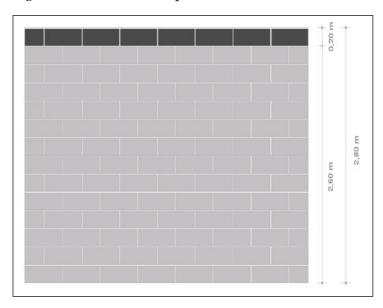

concreto maciço, de altura de 19 cm, responsável por aumentar a resistência da estrutura. Totalizando assim, uma altura de paredes de 2,8 m. Ele possui reboco interno e externo de 2 cm cada, e pintura na cor amarela.

Figura 2 – representação dos blocos de concreto utilizados

Fonte: das autoras

Figura 3 - Modulação da parede com os blocos vazados e maciços

Fonte: das autoras

Os três ambientes avaliados são compostos por duas suítes e uma sala de jantar. As suítes são construídas em bloco de concreto conforme descrito anteriormente. Já o fechamento externo da sala de jantar é de vidro comum de 3 mm, contando com um pilar entre a posição norte e oeste, que possui 19 cm de concreto, mais 2 cm em cada lado de reboco. Todos os ambientes contam com a camada de 19 cm de bloco maciço, representando assim a viga da edificação.

A cobertura é constituída por uma laje maciça de 10 cm, com reboco interno de 2 cm e uma câmara de ar acima da laje com espessura superior a 5 cm, finalizando com uma telha de barro de 1 cm.

0,21
5,10×2,60

SALA DE JANTAR

99'1
91'0

AREA: 20,955 m²
N

Figura 4 – Planta baixa da sala de jantar com suas respectivas dimensões

Fonte: das autoras.

0,15 3,00 0,15 1.80x1.60/90 1.80x1.60/90 SUÍTE 1 SUÍTE 2

AREA: 10,80 m² N AREA: 10,80 m² N

Figura 5 - Planta baixa das suítes com suas respectivas dimensões

Fonte: das autoras.

3.4 Cálculo Fechamentos Opacos

Para encontrar o desempenho térmico destes ambientes, as seguintes fórmulas foram resolvidas:

Em fechamentos opacos, como paredes, calcula-se:

Resistência Térmica das Superfícies (Rt)

$$Rt = \sum \left(\frac{e \ camadas}{\lambda \ camadas} + Rar \right)$$

e = espessura da camadas analisada

 λ = condutividade térmica do material

Rar = resistência da camada de ar(se possuir)

As paredes são compostas por blocos de concreto vazados e maciços, com espessuras apresentadas na Figura 2, mais reboco interno e externo, de 2cm de espessura cada. O pilar e a cobertura têm suas espessuras apresentadas anteriormente.

A condutividade térmica do concreto é 1,75 (W/(m.K)), da argamassa é 1,15 (W/(m.K)) e da telha de barro é 0,7 (W/(m.K)), conforme a Tabela B.3 do Projeto 02:135.07-002 (ABNT, 2003). A resistência da camada de ar do bloco vazado é 0,17 e da camada de ar da cobertura é 0,61, de acordo com a Tabela B.3 do Projeto 02:135.07-002 (ABNT, 2003).

Resistência Térmica Total (RT)

RT = Rsi + Rt + Rse

Rsi = resistência da superfície exterior

Rse = resistência da superfície interior

As resistências das superfícies são retiradas da Tabela A.1 do Projeto 02:135.07-002 (ABNT, 2003), sendo Rsi 0,13 (m².K)/W e Rse 0,04 (m².K)/W.

Transmitância Térmica (U)

$$U=\frac{1}{RT}$$

A Tabela 1 apresenta os valores de Rt, RT e U para as 3 composições do projeto.

Tabela 1 - Valores de Rt, RT e U

	Rt (m ² .K)/W	RT (m ² .K)/W	U W/(m ² .k)
Pilar	0,178	0,348	2,877
Parede maciça (viga)	0,115	0,285	3,511
Parede vazada	0,239	0,409	2,358
Cobertura	0,699	0,909	1,100

Fonte: das autoras.

Fluxo Térmico (q)

 $q = \alpha * I * Rse + te - ti$

 α = absortividade da superfície externa do fechamento

I = radiação solar conforme latitude

Rse = resistência da superfície externa

te = temperatura externa

ti = temperatura interna

A absortividade da superfície externa do fechamento, pintura amarela, pode ser encontrada na Tabela B.3 do Projeto 02:135.07-002 (ABNT, 2003) e é igual a 0,3; e da telha cerâmica é igual a 0,9.

O valor da radiação solar é considerado o valor do pior dia, 22 de dezembro, para cada parede, na latitude 30° Sul, onde está aproximadamente o município de Estrela/RS. Para as faces Norte esse valor é 179 W/m^2 às 12h, para as faces Leste é de 715W/m^2 às 8h, para as faces Oeste é 715W/m^2 às 16h e para a cobertura é de 1034 W/m^2 às 12h.

A temperatura externa foi considerada em 34 °C e a interna deve chegar aos 23 °C.

Fluxo térmico total que atravessa o fechamento (Q)

Q = A * q

A = área da superfície

A Tabela 2, 3 e 4 apresentam os valores de q, A e Q, para a suíte 1 e 2 e para a sala de jantar.

Tabela 2 – Valores de q, A e Q da Suíte 1

Suíte 1	q (W/(m ² .K))	A (m²)	Q (W)
Parede vazada - Leste	46,173	4,920	227,171
Parede maciça (viga) - Leste	68,754	0,570	39,190
Parede vazada - Norte	31,005	9,360	290,209
Parede maciço (viga) - Norte	46,169	0,684	31,580
Cobertura	57,023	10,800	615,850

Fonte: das autoras.

Tabela 3 – Valores de q, A e Q da Suíte 2

Suíte 2	q (W/(m ² .K))	A (m ²)	Q (W)
Parede vazada - Leste	46,173	4,920	227,171
Parede maciço - Leste	68,754	0,570	39,190
Cobertura	57,023	10,800	615,850

Fonte: das autoras.

Tabela 4 – Valores de q, A e Q da Sala de Jantar

Sala de Jantar	q (W/(m².K))	A (m²)	Q (W)
Viga – Norte	46,169	1,026	47,370
Viga – Oeste	68,754	77,330	5316,760
Pilar – Norte	37,821	0,754	28,517
Pilar – Oeste	56,323	0,754	42,467
Cobertura	57,006	20,955	1194,570

Fonte: das autoras.

Para o cálculo do fluxo térmico considerou-se apenas as paredes com faces externas e a cobertura dos ambientes analisados, sendo assim desconsiderados os banheiros das suítes e as demais paredes internas.

3.5 Cálculo Fechamentos Transparentes

Já nos casos de utilização de vidros, o valor da transmitância térmica (U) é informada pelo fabricante, variando conforme cada material, cor, espessura e camada de ar presentes.

Para fechamentos transparentes, calcula-se:

Fluxo Térmico por Condução (qa)

$$qa = U * (te - ti)$$

A transmitância térmica do vidro comum de 3 mm é encontrado no Catálogo de Propriedades Térmicas de Paredes, Coberturas e Vidros (INMETRO, 2013), sendo igual a $\frac{W}{m^2*K}$.

Ganho Solar pelo Vidro (qs)

$$qs = Fs * I$$

Fs = fator solar determinado pelo fabricante

O fator solar do vidro comum é igual a 0,87.

Fluxo Térmico (q)

$$q = qa + qs$$

Fluxo térmico total que atravessa o fechamento (Q)

$$Q = A * q$$

A Tabela 5 apresenta os resultados para os fechamentos transparentes.

Tabela 5 – Fechamentos transparentes

	qa (W/(m².K))	qs (W/(m ² .K))	q (W/(m ² .K))	A (m ²)	Q (W)
Vidro Suíte 1 - Leste	62,70	622,05	684,75	2,88	1972,08
Vidro Suíte 2 - Leste	62,70	622,05	684,75	2,88	1972,08
Vidro Sala de Jantar - Norte	62,70	155,73	218,43	13,26	2896,38
Vidro Sala de Jantar - Oeste	62,70	622,05	684,75	11,44	7833,54

Fonte: das autoras.

3.6 Cálculo Total

Fazendo o somatório do fluxo térmico total dos fechamentos opacos e transparentes por ambiente tem se na primeira Suíte: 3176,08 Watts, na segunda Suíte: 2854,29 Watts, e na Sala de Jantar: 17359,61 Watts. Segundo à análise, o valor mais expressivo foi na sala de jantar, devido à grande quantidade de vidro em seu fechamento externo.

Os valores apresentados são apenas dos fechamentos externos, sem contabilizar o fluxo térmico devido à presença de pessoas e equipamentos elétricos.

4 ANÁLISES E ENSAIOS

4.1 Desempenho térmico inicial

Com os resultados do fluxo térmico total dos ambientes, foram feitos os acréscimos necessários (iluminação, equipamentos e pessoas), além da transformação de Watts para BTU/h (1 Watt é igual a 3,412 BTU/h), para possibilitar o dimensionamento do aparelho de ar condicionado.

Tabela 1 – Eficiência dos ambientes em Watts e BTU/h

Suíte 1	Suíte 2	Sala de Jantar
2 pessoas = 300 W	2 pessoas = 300 W	6 pessoas = 900 W
2 luminárias = 9 W	2 luminárias = 9 W	3 lâmpadas = 120 W
1 TV = 90 W	1 TV = 90 W	1 geladeira = 200 W
1 lâmpada teto = 40 W	1 lâmpada teto = 40 W	
Fluxo térmico = 3176,08 W	Fluxo térmico = 2854,29 W	Fluxo térmico = 17359,61 W
Total = 3615,08 W	Total = 3293,29 W	Total = 18579,61 W
12334,65 BTU/h	11236,71 BTU/h	63393,62 BTU/h

Fonte: das autoras

Para simular os gastos com energia com o atual ambiente foi feito uma simulação de gastos com o uso de ar condicionados para manter a temperatura interna de 23 °C. A suíte 1 e 2 necessitariam a adoção de um ar condicionado de 12.000 BTU cada, e a sala de jantar iria precisar da instalação de um ar condicionado de 65.000 BTU. Com as potências dos aparelhos determinadas, para saber a quantidade de kW.h utilizado por eles, basta dividir a potência do aparelho por 1000. Sendo assim, o consumo de kW.h dos aparelhos de 12.000 BTU é de 1,2 kW.h, e do aparelho de 65.000 BTU é de 6,5 kW.h.

Nos casos da suítes foi estimado que o tempo de uso do ar condicionado seria de 8 horas por dia, em 21 dias do mês. Já na sala de jantar foi estimado o uso de 6h por dia em 21 dias por mês. O uso de kW.h da suíte 1/suíte 2 e sala de jantar é respectivamente: 201,6 kW.h e 819 kW.h.

A tarifa da energia elétrica utilizada foi de R\$0,64/kWh, que é a tarifa residencial amarela (R\$0,41/kWh) com o acréscimo de 30% de ICMS e mais 10% de taxas de iluminação pública, conforme disponível no site da RGE Sul, companhia elétrica que atende o município de Estrela/RS. O gasto mensal da suíte 1/suíte 2 foi estimado em R\$129,02 e da sala de jantar foi estimado em R\$524,16. Sendo assim, os gastos totais mensais com os equipamentos de ar condicionado dos três ambientes ficaram em R\$782,20.

4.2 Solução proposta

Tendo em vista os resultados obtidos com os materiais inicialmente utilizados, propõe-se uma substituição de alguns dos mesmos para a adoção de materiais com melhor desempenho térmico, buscando uma eficiência energética desta residência e uma maior economia na conta de energia.

Na parede, optou-se por manter a estrutura a mesma, apenas foi acrescentado uma camada de 8 cm de poliestireno estrudado, tanto no bloco vazado (U = 0,371 W/(m².K)), quanto no bloco maciço de concreto (U = 0,389 W/(m².K)). Todos os vidros externos encontrados na janela da primeira suíte e na sala de jantar, foram substituídos por um conjunto de vidro e breeze na sua parte externa, o vidro é do tipo insulado de controle solar prata de 24 mm, da marca Glassec Viracon, que conta com uma camada de ar entre os vidros, melhorando assim o valor da transmitância térmica (U = 1,48 W/(m².K)). Na cobertura também se manteve a mesma estrutura, apenas foi modificado a telha de barro para uma telha sanduíche com camada de 5 cm de espuma rígida de poliuretano, com 1 cm de telha metálica em cada lado (U = 0,39 W/(m².K)).

Desta forma, calculou-se novamente o desempenho térmico dos ambientes. Sendo o fluxo térmico total na primeira Suíte: 407,14 Watts, na segunda Suíte: 357,97 Watts, e na Sala de Jantar: 1915,97 Watts. Somando o calor transmitido pelas pessoas que ocupam o ambiente mais os equipamentos elétricos mostrados anteriormente, encontrou-se respectivamente: 846,14 W, 796,97 W e 3135,97 W. Transformando esses valores para BTU/h: 2887,03

BTU/h, 2719,26 BTU/h e 10699,93 BTU/h. Sendo assim, em ambas as suítes, se o proprietário optar por instalar um condicionador de ar, pode escolher um de 7.000 BTU, que é o menor disponível no mercado, e na sala de jantar pode ser instalado um de 12.000 BTU.

Para simular os novos gastos com energia utilizou-se a mesma tarifa (R\$0,64/kW.h) e o mesmo uso diário de cada equipamento de ar condicionado, chegando no valor de R\$ 75,26 para cada suíte e de R\$96,77 para a sala de jantar.

5 RESULTADOS

Com a substituição do sistema inicial do projeto para o proposto neste artigo, há grande melhora na eficiência térmica desta residência. Pois a redução do fluxo térmico total foi grande, gerando menos necessidade de possuir algum tipo de ventilação forçada, como o ar condicionado, por exemplo.

O Gráfico 1 faz o comparativo dos gastos com energia elétrica dos 3 equipamentos de ar condicionado, antes das melhorias e após as melhorias.

R\$524,16

R\$129,02 R\$75,26

R\$129,02 R\$75,26

R\$96,//

Suite 1

Suite 2

Sala de Jantar

Antes

Depois

Gráfico 1 – Gastos mensais com energia

Fonte: das autoras.

A economia total gerada mensalmente pela adoção do segundo conjunto de materiais é de R\$ 534,91, ou seja, 68,38% da conta total. Em um ano a economia chega a R\$ 6418,94. Mostrando assim, que a utilização de materiais com um melhor desempenho térmico pode fazer muita diferença na quantidade da energia elétrica necessária para refrigerar um ambiente.

REFERÊNCIAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR15575-1: **Edificações habitacionais** — **Desempenho**. Parte 1: Requisitos gerais. Rio de Janeiro: ABNT, 2013.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Projeto 02:135.07-001/2: Desempenho Térmico de Edificações Parte 2: **Métodos de Cálculo da Transmitância Térmica, da Capacidade Térmica, do Atraso Térmico e do Fator Solar de Elementos e Componentes de Edificações**. Rio de Janeiro: ABNT, 2003.

FAVOINO, Fabio; JIN, Qian; OVEREND, Mauro. Design and Control Optimisation of Adaptive Insulation Systems for Office Buildings. Part 1: Adaptive Technologies and Simulation Framework. Energy, v. 127, n. 1, p. 301-309, 2017. Disponível em: http://www.sciencedirect.com/science/article/pii/S0360544217304589. Acesso em: 11 abr. 2017.

GIVONE, Baruch. Man, ClimateandArchitecture. London: Elsevier, 1981.

GlassecViracon. **Vidro Insulado**. Disponível em: http://www.glassecviracon.com. br/produtos/insulado/#insulado>. Acesso em 22 abr. 2017.

PERALTA, Gizela. **Desempenho Térmico de Telhas:** Análise de Monitoramento e Normatização Específica. 2006. 131 p. Dissertação (Mestrado em Arquitetura e Urbanismo) – Universidade de São Paulo, São Carlos, 2006.